Skip to main content
Log in

Investigation of photoluminescence and dielectric properties of europium-doped LaOCl nanophosphor and its Judd–Ofelt analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present Phosphor La1−xEuxOCl (0 ≤ x ≤ 0.09) was synthesized via conventional solid-state method at a temperature of 700 °C for a duration of 2 h. The compound crystallized in the tetragonal structure with space group P4/nmm (No. 129). The intensity of transition 5D0 → 7F2 (617 nm) was found to be more intense in the photoluminescence spectra. Intensity parameters and radiative properties like radiative lifetime, transition probabilities, and branching ratio are evaluated employing of the Judd–Ofelt theory. At room temperature for a frequency range of 10 Hz—8 MHz, AC conductivity, dielectric properties of La1−xEuxOCl (0.01 ≤ x ≤ 0.09) are studied. Studies indicate that above 30 kHz till100 kHz, the AC conductivity establishes slowly and at 300 kHz increases rapidly. Greater values of dielectric constant and loss were exhibited towards lower frequencies which then declined significantly with increasing frequency making the phosphor suitable for microwave device applications. The CIE color coordinates results of Eu3+-activated LaOCl phosphor (0.642, 0.358) were closer to the commercial red phosphors such as Y2O3:Eu3+(0.645, 0.347), Y2O2S:Eu3+ (0.647, 0.343) and National Television System Committee (NTSC) (0.67, 0.33) resulting in making LaOCl:Eu3+behaves as a promising material for red phosphor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Dhananjaya, S.R. Yashodha, C. Shivakumara, Synthesis, characterization and spectroscopic properties of GdOF:Eu3+ phosphors and their Judd–Ofelt analysis. Int. J. Nanotechnol. 14, 727–738 (2017). https://doi.org/10.1504/IJNT.2017.086759

    Article  CAS  Google Scholar 

  2. G. Blasse, A. Bril, Fluorescence of Eu3+-activated lanthanide oxyhalides LnOX. J. Chem. Phys. 46, 2579–2582 (1967). https://doi.org/10.1063/1.1841086

    Article  CAS  Google Scholar 

  3. U. Rambabu, A. Mathur, S. Buddhudu, Fluorescence spectra ofEu3+ and Tb3+-doped lanthanide oxychloride powder phosphors. Mater. Chem. Phys. 61, 156–162 (1999). https://doi.org/10.1016/S0254-0584(99)00122-4

    Article  CAS  Google Scholar 

  4. U. Rambabu, N.R. Muniratham, T.L. Prakash, S. Buddhudu, Emission spectra of LnPO4:RE3+ (Ln = La, Gd; RE = Eu, Tb and Ce) powder phosphors. Mater. Chem. Phys. 78, 160–169 (2002). https://doi.org/10.1016/S0254-0584(02)00294-8

    Article  CAS  Google Scholar 

  5. V.V. Bunda, M.V. Shtilikha, V.M. Goldvei, Thermal stability of lanthanide oxide chlorides. Russ. J. Inorg. Chem. 29, 1741 (1984)

    Google Scholar 

  6. E. Antic-Fidancev, J. Holsa, M.L. Blaise, P. Porcher, Observation and simulation of the energy-level scheme of the Pr3+ ion in REOCI. J. Chem. Soc.: Faraday Trans 87, 3625–3630 (1991). https://doi.org/10.1039/FT9918703625

    Article  CAS  Google Scholar 

  7. G. Li, T. Long, Y. Song, G. Gao, J. Xu, B. An, S. Gan, G. Hong, Preparation and luminescent properties of CaAl2O4:Eu3+, R+(R = Li, Na, K) phosphors. J. Rare Earths 28, 22–25 (2010). https://doi.org/10.1016/S1002-0721(09)60042-9

    Article  CAS  Google Scholar 

  8. Y. Guo, X. Yu, J. Liu, X. Yan, Photoluminescence of Eu2+-activated Na1 – xAl1 – xSi1 + xO4 upon UV excitation. J. Rare Earths 28, 34–36 (2010). https://doi.org/10.1016/S1002-0721(09)60045-4

    Article  CAS  Google Scholar 

  9. K. Rajeswar, N.R. Tacconi, C.R. Chenthamarakshan, Semiconductor-based composite materials: Preparation, properties and performance. Chem. Mater 13, 2765–2782 (2001). https://doi.org/10.1021/cm010254z

    Article  CAS  Google Scholar 

  10. A.P. Alivisatos, Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996). DOI:https://doi.org/10.1126/science.271.5251.933

    Article  CAS  Google Scholar 

  11. M.A. Anderson, S. Gorer, R.M. Penner, A hybrid electrochemical/chemical synthesis of supported, luminescent cadmium sulfide nanocrystals. J. Phys. Chem. B 101, 5895–5899 (1997). https://doi.org/10.1021/jp970627c

    Article  CAS  Google Scholar 

  12. A. Choubey, S. Som, M. Biswas, S.K. Sharma, Characterization of optical transitions of Eu3+ in lanthanum oxychloride nanophosphor. J. rare earths 29, 345–348 (2011). https://doi.org/10.1016/S1002-0721(10)60457-7

    Article  CAS  Google Scholar 

  13. B.R. Judd, B R, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962). https://doi.org/10.1103/PhysRev.127.750

    Article  CAS  Google Scholar 

  14. G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962). https://doi.org/10.1063/1.1701366

    Article  CAS  Google Scholar 

  15. M.T. Rahman, M. Vargas, C.V. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014). https://doi.org/10.1016/j.jallcom.2014.07.182

    Article  CAS  Google Scholar 

  16. S.W. Kim, K. Jyoko, T. Masui, N. Imanaka, Green-emitting (La,M,Tb)OCl (M = Mg, Ca, and Sr) phosphors. Opt. Mater. 35, 280–284 (2012). https://doi.org/10.1016/j.optmat.2012.08.022

    Article  CAS  Google Scholar 

  17. S. Park, S.H. Cho, Spectral-converting study of La1 – mnErmYbnOCl (m = 0.001–0.2, n = 00.1) phosphors. J. Lumin., 153, 90–95 (2014). https://doi.org/10.1016/j.jlumin.2014.03.023

  18. Z.X. Wei, Y. Wang, X.J. Zhang, C.W. Hu, Combustion synthesis and effect of LaMnO3 and LaOCl powder mixtureon HMX thermal decomposition. Thermochim. Acta 499, 111–116 (2010). https://doi.org/10.1016/j.tca.2009.11.010

    Article  CAS  Google Scholar 

  19. A.K. Zak, W.H.A. Majid, M. Darroudi, Facile synthesis and characterization of lanthanum (III) oxychloride nanoparticles using a natural polymeric matrix. Mater. Chem. Phys. 136, 705–709 (2012). https://doi.org/10.1016/j.matchemphys.2012.07.045

    Article  CAS  Google Scholar 

  20. S.S. Lee, H.I. Park, C.H. Joh, S.H. Byeon, Morphology dependent photoluminescence property of red-emitting LnOCl:Eu3+ (Ln = La and Gd). J. Solid State Chem 180, 3529–3534 (2007). https://doi.org/10.1016/j.jssc.2007.10.020

    Article  CAS  Google Scholar 

  21. J. Lee, Q. Zhang, F. Saito, Mechanochemical synthesis of LaOX (X = Cl, Br) and their solid -state solutions. J. Solid State Chem. 160, 469–473 (2001). https://doi.org/10.1006/jssc.2001.9276

    Article  CAS  Google Scholar 

  22. S.G. Prasanna Kumar, R. Hari Krishna, Nagaraju Kottama, P. Krishna Murthy, C. Manjunatha, R. Preetham, C. Shivakumara, T. Thomas, Understanding the photoluminescence behaviour in nano CaZrO3:Eu3+ pigments by Judd-Ofelt intensity parameters, Dyes and Pigments, 150, 306–314 (2018). https://doi.org/10.1016/j.dyepig.2017.12.022

    Article  CAS  Google Scholar 

  23. S.R. Yashodha, N. Dhananjaya, C. Manjunath, Synthesis and photoluminescence properties of Sm3+ doped LaOCl phosphor with reddish-orange emission and it’s Judd- Ofelt analysis. Mater. Res. Express 7, 15003–15019 (2020). https://doi.org/10.1088/2053-1591/ab57a6

    Article  CAS  Google Scholar 

  24. A. Khorsand Zak, W.H. Abd, M.Darroudi, synthesis and characterization of lanthanum (III) oxychloride nanoparticles using a natural polymeric matrix. Mater Chem Phys. 136, 705–709 (2012). https://doi.org/10.1016/j.matchemphys.2012.07.045

    Article  CAS  Google Scholar 

  25. S.R. Yashodha, N. Dhananjaya, C. Shivakumara, Study of (La, Gd)OCl:Eu3+ phosphors for WLEDs application: photoluminescence and Judd–Ofelt analysis. Int. J. Nanotechnol. 14, 801–815 (2017). https://doi.org/10.1504/IJNT.2017.086765

    Article  CAS  Google Scholar 

  26. J.K. Park, S.M. Park, C.H. Kim, H.D. Park, S. Choi, Photoluminescence properties of the Eu3 + in La2O3. J. Mater. Sci. Lett. 20, 2231–2232 (2001). https://doi.org/10.1023/A:1017997320503

    Article  CAS  Google Scholar 

  27. C. Manjunath, M.S. Rudresha, B.M. Walsh, R. Hari Krishna, B.S. Panigrahi, B.M. Nagabhushana, Optical absorption intensity analysis using Judd-Ofelt theory and photoluminescence investigation of orange-red Sr2SiO4: Sm3+ nanopigments. Dyes and Pigments. 148, 118–129 (2018). https://doi.org/10.1016/j.dyepig.2017.08.036

    Article  CAS  Google Scholar 

  28. G. Blasse, Energy transfer in oxidic phosphors. Phys Lett 28, 444–445 (1968). 10.1016/0375–9601(68)90486-6

    Article  CAS  Google Scholar 

  29. N. Dhananjaya, C. Shivakumara, R. Saraf, S. Behera, H. Nagabhushana, Comparative study of Eu3+-activated LnOCl (Ln = La and Gd) phosphors and their Judd-Ofelt analysis. J. Rare Earths 33, 946–953 (2015). https://doi.org/10.1016/S1002-0721(14)60510-X

    Article  CAS  Google Scholar 

  30. L.G. Van Uitert, Characterization of energy transfer interactions between rare earth ions. J Electrochem Soc. 114, 1048–1053 (1967). https://doi.org/10.1149/1.2424184

    Article  Google Scholar 

  31. K. Christian, R. Jorgensen, feldt, Judd-Ofelt parameters and chemical bonding. J Less Common Met 93, 107–112 (1983). https://doi.org/10.1016/0022-5088(83)90454-X

    Article  Google Scholar 

  32. F.K. William, Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals. Phys Rev 145, 325–337 (1966). https://doi.org/10.1103/PhysRev.145.325

    Article  Google Scholar 

  33. R. Venkatesh, N. Dhananjaya, M.K. Sateesh, J.P. Shabaaz Begum, S.R. Yashodha, H. Nagabhushana, C. Shivakumara, Effect of Li, Na, K cations on photoluminescence of GdAlO3:Eu3+ nanophosphor and study of Li cation on its antimicrobial activity. J. Alloys Compd. 732, 725–739 (2018). https://doi.org/10.1016/j.jallcom.2017.10.117

    Article  CAS  Google Scholar 

  34. X. Wang, C. Liu, T. Yuaand, X. Yan, Controlled synthesis, photoluminescence and the quantum cutting mechanism of Eu3 + doped NaYbF4 nanotubes. Phys. Chem. Chem. Phys. 16, 13440–13446 (2014). https://doi.org/10.1039/C4CP01263A

    Article  CAS  Google Scholar 

  35. Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huangand, H. Yu, Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor. J. Appl. Phys. 109, 053511–053516 (2011). https://doi.org/10.1063/1.3551584

    Article  CAS  Google Scholar 

  36. F. Liu, Y. Fang, N. Zhang, J. Hou, Z. Ma, G. Zhao, Blue light excited Li6CaLa2M2O12:Eu3+ (M = Ta, Sb) red emitting phosphors: structure and Photoluminescence properties. Ceram. Int. 40, 14781–14786 (2014). https://doi.org/10.1016/j.ceramint.2014.06.069

    Article  CAS  Google Scholar 

  37. G. Yellaiah, M. Nagabhushanam, Variable range hopping (VRH) conductivity, ac conductivity and dielectric studies on Sm3+ doped Cd0.8Zn0.2S semiconductor compounds. Journal of Crystal Growth. 421, 33–38 (2015). https://doi.org/10.1016/j.jcrysgro.2015.04.006

    Article  CAS  Google Scholar 

  38. C.R. Mariappan, G. Govindaraj, S.V. Rathan, G.V. Prakash, Preparation, characterization, ac conductivity and permittivity studies on vitreous M4AlCdP3O12 (M = Li, Na, K) system. Mater Sci Eng. 121, 2–8 (2005). https://doi.org/10.1016/j.mseb.2004.11.005

    Article  CAS  Google Scholar 

  39. A.K. Jonscher, Universal Relaxation Law Chelsea Dielectric Group, London. (1996) (Chap. 5)

  40. J. Hazarikaand, A. Kumar, Enhanced ac conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions. Nuc. Inst. Meth. Phy. Res. B .333, 73–79 (2014). https://doi.org/10.1016/j.nimb.2014.04.019

    Article  CAS  Google Scholar 

  41. M.K. Anupama, B. Rudraswamy, N. Dhananjaya, Investigation on impedance response and dielectric relaxation of Ni-Zn ferrites prepared by self-combustion technique. J. Alloys Compd. 706, 554–561 (2017). https://doi.org/10.1016/j.jallcom.2017.02.241

    Article  CAS  Google Scholar 

  42. G.P. Johari, K. Pathmanathan, The dipolar and conductivity relaxations in ionic conductors. Phys. Chem. Glasses 29, 219–224 (1988).

    CAS  Google Scholar 

  43. M. Hashim, S. Kumar, S.E. Shirsath, E.M. Mohammed, H. Chung, R. Kumar, Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite. Phy. B: Condens. Matter 407, 4097–4103 (2012). https://doi.org/10.1016/j.physb.2012.06.006

    Article  CAS  Google Scholar 

  44. A. Azam, Microwave assisted synthesis and characterization of Co-doped Cu ferrite nanoparticles. J.Alloys Compd. 540, 145–153 (2012). https://doi.org/10.1016/j.jallcom.2012.06.068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dhananjaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashodha, S.R., Dhananjaya, N., Manohara, S.R. et al. Investigation of photoluminescence and dielectric properties of europium-doped LaOCl nanophosphor and its Judd–Ofelt analysis. J Mater Sci: Mater Electron 32, 11511–11523 (2021). https://doi.org/10.1007/s10854-021-05726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05726-8

Navigation