Skip to main content
Log in

Magnetic field sensor using the asymmetric giant magnetoimpedance effect created by micromagnets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A magnetic field sensor was developed using the asymmetric giant magnetoimpedance (AGMI) effect. Amorphous ferromagnetic (Fe0.06Co0.94)72.5Si12.5B15 wires were used in this study. The 2-cm-long wire showed an approximately 88% giant magnetoimpedance effect, and the 7-cm-long wire showed an approximately 197% giant magnetoimpedance effect. When two micromagnets were placed 1 cm from the ends of the wire, a distortion in the two peak shapes of the GMI curve was observed, and asymmetry was created by the micromagnets. The 7-cm-long wire showed an approximately 148% AGMI effect. A simple and a new approach was designed to develop a magnetic field sensor. In the design circuit, two signal generators were used to arrange the linearity and dc offset in the output signal. The circuit output showed good linearity and zero hysteresis in the ± 250 A/m and ± 50 A/m magnetic field regions for the 2-cm-long and 7-cm-long wires, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.H. Phan, H.X. Peng, Mater. Sci. 53, 323 (2008)

    Google Scholar 

  2. M. Knobel, K.R. Pirota, J. Magn. Magn. Mater. 242, 33 (2002)

    Article  Google Scholar 

  3. M. Vazquez, J. Magn. Magn. Mater. 226–230, 693 (2001)

    Article  Google Scholar 

  4. L. Kraus, Sens. Actuators A 106, 187 (2003)

    Article  CAS  Google Scholar 

  5. S.Q. Xiao, Y.H. Liu, S.S. Yan, Y.Y. Dai, L. Zhang, L.M. Mei, Phys. Rev. B 61, 5734 (2000)

    Article  CAS  Google Scholar 

  6. V.S. Kolat, N. Bayri, S. Michalik, T. Izgi, F.E. Atalay, H. Gencer, S. Atalay, J. Non Cryst. Solids 355, 2562 (2009)

    Article  CAS  Google Scholar 

  7. M. Knobel, M. Vazquez, L. Kraus, in Handbook of Magnetic Materials, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2003), p. 497

  8. L.V. Panina, K. Mohri, Appl. Phys. Lett. 65, 1189 (1994)

    Article  CAS  Google Scholar 

  9. M. Vazquez, M. Knobel, M.L. Sanchez, R. Valenzuela, A.P. Zhukov, Sens. Actuators A 59, 20 (1997)

    Article  CAS  Google Scholar 

  10. K.R. Pirota, L. Kraus, M. Knobel, P.G. Pagliuso, C. Rettori, Phys. Rev. B 9, 6685 (1999)

    Article  Google Scholar 

  11. L.V. Panina, K. Mohri, J. Magn. Magn. Mater. 157–158, 137 (1996)

    Article  Google Scholar 

  12. R.S. Beach, A.E. Berkowitz, Appl. Phys. Lett. 64, 3652 (1994)

    Article  CAS  Google Scholar 

  13. M. Vazquez, Y.F. Li, D.X. Chen, J. Appl. Phys. 91, 6539 (2002)

    Article  CAS  Google Scholar 

  14. P. Aragoneses, A.P. Zhukov, J. Gonzalez, J.M. Blanco, L. Dominguez, Sens. Actuators A 81, 86 (2000)

    Article  CAS  Google Scholar 

  15. S.K. Pal, A.K. Panda, M. Vazquez, A. Mitra, J. Mater. Process. Technol. 172, 182 (2006)

    Article  CAS  Google Scholar 

  16. T. Uchiyama, K. Mohri, Y. Honkura, L.V. Panina, IEEE Trans. Magn. 48, 3833 (2012)

    Article  Google Scholar 

  17. T. Wang, Y. Zhou, C. Lei, J. Luo, S. Xie, H. Pu, Biosens. Bioelectron. 90, 418 (2017)

    Article  CAS  Google Scholar 

  18. C. Moron, C. Cabrera, A. Moron, A. García, M. Gonzalez, Sensors 15, 28340 (2015)

    Article  Google Scholar 

  19. T. Uchiyama, S. Nakayama, K. Mohri, K. Bushida, Phys. Status Solidi A 206, 639 (2009)

    Article  CAS  Google Scholar 

  20. K. Mohri, Y. Honkura, L.V. Panina, T. Uchiyama, J. Nanosci. Nanotechnol. 12, 7491 (2012)

    Article  CAS  Google Scholar 

  21. K. Mohri, F.B. Humphrey, L.V. Panina, Y. Honkura, J. Yamasaki, T. Uchiyama, M. Hirami, Phys. Status Solidi A 206, 601 (2009)

    Article  CAS  Google Scholar 

  22. L.V. Panina, K. Mohri, D.P. Makhnovskiy, J. Appl. Phys. 85, 5444 (1999)

    Article  CAS  Google Scholar 

  23. D.P. Makhnovskiy, L.V. Panina, D.J. Mapps, Appl. Phys. Lett. 77, 121 (2000)

    Article  CAS  Google Scholar 

  24. X. Li, W.X. Lv, Y. Han, Q. Zhang, W.H. Xie, Q. Zhao, Z.J. Zhao, J. Alloys Compd. 730, 17 (2018)

    Article  CAS  Google Scholar 

  25. P. Ciureanu, I. Khalil, L.G.C. Melo, P. Rudkowski, A. Yelon, J. Magn. Magn. Mater. 249, 305 (2002)

    Article  CAS  Google Scholar 

  26. L. Kraus, M. Malatek, S.S. Yoon, C.G. Kim, J. Magn. Magn. Mater. 304, 214 (2006)

    Article  CAS  Google Scholar 

  27. M.H. Phan, S.C. Yu, C.G. Kim, M. Vazquez, Appl. Phys. Lett. 83, 2871 (2003)

    Article  CAS  Google Scholar 

  28. L.V. Panina, J. Magn. Magn. Mater. 249, 278 (2002)

    Article  CAS  Google Scholar 

  29. A.S. Antonov, N.A. Buznikov, Tech. Phys. Lett. 42, 814 (2016)

    Article  CAS  Google Scholar 

  30. J. Fan, N. Ning, J.B. Yi, L.S. Tan, X.P. Li, Phys. Scr. T 139, 014076 (2010)

    Article  Google Scholar 

  31. E.F. Silva, M. Gamino, A.M.H. Andrade, M.A. Correa, M. Vazquez, F. Bohn, App. Phys. Lett. 105, 102409 (2014)

    Article  Google Scholar 

  32. J. Torrejon, M. Vazquez, L.V. Panina, J. Appl. Phys. 105, 033911 (2009)

    Article  Google Scholar 

  33. T. Kitoh, K. Mohri, T. Uchiyama, IEEE Trans. Magn. 31, 3137 (1995)

    Article  Google Scholar 

  34. S.H. Song, S.C. Yu, C.G. Kim, H.C. Kim, W.Y. Lim, J. Appl. Phys. 87, 5266 (2000)

    Article  CAS  Google Scholar 

  35. G. Kim, K.J. Jang, H.C. Kim, S.S. Yoon, J. Appl. Phys. 85, 5447 (1999)

    Article  CAS  Google Scholar 

  36. S.S. Yoon, P. Kollu, D.Y. Kim, G.W. Kim, Y. Cha, C.G. Kim, IEEE Trans. Magn. 45, 2727 (2009)

    Article  CAS  Google Scholar 

  37. G. Yu, X. Bu, B. Yang, Y. Li, C. Xiang, IEEE Sens. J. 11, 2273 (2011)

    Article  Google Scholar 

  38. P. Kollu, L. Jin, K.W. Kim, S.S. Yoon, C.G. Kim, Appl. Phys. A 90, 533 (2008)

    Article  CAS  Google Scholar 

  39. P.S. Traore, A. Asfour, J.P. Yonnet, C. Boudinet, Sens. Actuators A 271, 290 (2018)

    Article  CAS  Google Scholar 

  40. M.M. Tehranchi, M. Ghanaatshoar, S.M. Mohseni, H. Eftekhari, J. Non Cryst. Solids 354, 5175 (2008)

    Article  CAS  Google Scholar 

  41. P. Kollu, S.S. Yoon, G.W. Kim, C.S. Angani, C.G. Ki, J. Magn. 15, 194 (2010)

    Article  Google Scholar 

  42. S. Atalay, T. Izgi, N.A. Buznikov, V.S. Kolat, J. Magn. Magn. Mater. 453, 163 (2018)

    Article  CAS  Google Scholar 

  43. N.A. Buznikov, S. Atalay, Mater. Res. Express 5, 066107 (2018)

    Article  Google Scholar 

  44. D. Ménard, A. Yelon, J. Appl. Phys. 88, 379 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Inonu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Izgi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pektas, M., Kolat, V.S., Bayri, N. et al. Magnetic field sensor using the asymmetric giant magnetoimpedance effect created by micromagnets. J Mater Sci: Mater Electron 32, 13062–13067 (2021). https://doi.org/10.1007/s10854-021-05722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05722-y

Navigation