Skip to main content
Log in

Electric explosion of wires as versatile method for antibacterial Janus-like ZnO–Ag nanoparticles preparation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electric explosion of zinc and silver intertwined wires in an oxygen-containing atmosphere was used for the first time to produce ZnO–Ag bicomponent nanoparticles. Silver content was regulated by wire diameters. The nanoparticles were characterized by transmission electron spectroscopy, X-Ray diffraction. Optical properties of ZnO–Ag nanoparticles were studied by ultraviolet–visible spectroscopy. The phase state of nanoparticles in the range of high (12–35%) silver content has been established, which provides an increase in the photocatalytic activity in the visible spectral range. The Methylene blue degradation efficiency by ZnO-12Ag nanoparticles reached 90%, which was higher than that of ZnO nanoparticles produced by electric explosion of zinc wire. Composites had high antibacterial activity against Escherichia coli bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Ali, A.-R. Phull, M. Zia, Elemental zinc to zinc nanoparticles: is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. (2018). https://doi.org/10.1515/ntrev-2018-0067

    Article  Google Scholar 

  2. S. Kumar, V. Pandit, K. Bhattacharyya, V. Krishnan, Sunlight driven photocatalytic reduction of 4-nitrophenol on Pt decorated ZnO-RGO nanoheterostructures. Mater. Chem. Phys. 214, 364–376 (2018)

    Article  CAS  Google Scholar 

  3. V.P. Ghisman, A. Pimentel, E. Carlos, Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films. J. Alloy. Comp. 803, 922–933 (2019)

    Article  Google Scholar 

  4. S. Ghandomani, F. Jamli-Sheini, R. Yousefi, Optical and electrical properties of p-type Ag-doped ZnO nanostructures. J. Optoelectronic. Adv. Mater. 16, 232–237 (2014)

    Google Scholar 

  5. T. Mahardika, N.A. Putri, A.E. Putri, Rapid and low temperature synthesis of Ag nanoparticles on the ZnO nanorods for photocatalytic activity improvement. Res. Phys. 13, 102–209 (2019)

    Google Scholar 

  6. V. Sarma, G. Harith, S. Kumar, R. Sharma, K.L. Reddy, A. Bahuguna, Amorphous titania matrix impregnated with Ag nanoparticles as a highly efficient visible- and sunlight-active photocatalyst material. Mater. Technol. 32, 461–471 (2017)

    Article  Google Scholar 

  7. Z. Wang, X. Ye, L. Chen, P. Huang, Q. Wang, L. Ma, N. Hua, X. Liu, X. Xiao, S. Chen, Silver nanoparticles decorated grassy ZnO coating for photocatalytic activity enhancement. Mat. Scie. Semiconduct. Process. 121, 105–354 (2021)

    Google Scholar 

  8. A.S. Lozhkomoev, O.V. Bakina, A.V. Pervikov, S.O. Kazantsev, E.A. Glazkova, Synthesis of CuO–ZnO composite nanoparticles by electrical explosion of wires and their antibacterial activities. J. Mater. Sci. 30, 13209–13216 (2019)

    CAS  Google Scholar 

  9. R. Anugrahwidya, N. Yudasari, D. Tahir, Optical and structural investigation of synthesis ZnO/Ag Nanoparticles prepared by laser ablation in liquid. J. Mater. Scie. 105, 104712 (2020)

    CAS  Google Scholar 

  10. K. Rokesh, S.C. Mohan, K. Jothivenkatachalam, Photo-assisted advanced oxidation processes for Rhodamine B degradation using ZnO–Ag nanocomposite materials. J. Env. Chem. Eng. 6, 3610–3620 (2017)

    Article  Google Scholar 

  11. C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 12, 1531–1551 (2010)

    Article  CAS  Google Scholar 

  12. L. Burlibaşa, M. Chifiriuc, A. Hermenean, Synthesis, physico-chemical characterization, antimicrobial activity and toxicological features of AgZnO nanoparticles. Arab. J. Chem. 13, 4180–4197 (2020)

    Article  Google Scholar 

  13. D. Thatikayala, V. Banothu, J. Kim, D.S. Shin, S. Vijayalakshmi, J. Park, Enhanced photocatalytic and antibacterial activity of ZnO/Ag nanostructure synthesized by Tamarindus indica pulp extract. J. Mater. Sci. 31, 5324–5335 (2020)

    CAS  Google Scholar 

  14. Z. Li, F. Zhang, J. Xing, ZnO/Ag micro/nanospheres with enhanced photocatalytic and antibacterial properties synthesized by a novel continuous synthesis method. RSC Adv. 5, 612–620 (2015)

    Article  CAS  Google Scholar 

  15. S. Seong, I.S. Park, Y.C. Jung, T. Lee, S.Y. Kim, J.S. Park, J.H. Ko, J. Ahn, Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition. Mater. Des. 177, 107–831 (2019)

    Article  Google Scholar 

  16. E. Mendoza-Mendoza, A.G. Nuñez-Briones, L.A. García-Cerda, R.D. Peralta-Rodríguez, A.J. Montes-Luna, One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity. Ceram. Int. 44, 6176–6180 (2018)

    Article  CAS  Google Scholar 

  17. H.R. Yousefi, B. Hashemi, A. Mirzaei, H. Roshan, M.H. Sheikhi, Effect of Ag on the ZnO nanoparticles properties as an ethanol vapor sensor. Mat. Scie. Semiconduct. Proces. 117, 105–172 (2020)

    Google Scholar 

  18. M.I. El-Nahhal, R. Anbar, J.K. Salem, Preparation and antimicrobial activity of ZnO-NPs coated cotton/starch and their functionalized ZnO-Ag/cotton and Zn(II) curcumin/cotton materials. Sci. Rep. 10, 8806 (2020)

    Article  CAS  Google Scholar 

  19. M. Zare, K. Namratha, S. Alghamdi, Novel green biomimetic approach for synthesis of ZnO-Ag nanocomposite; antimicrobial activity against food-borne pathogen, biocompatibility and solar photocatalysis. Scie. Rep 9, (2019)

  20. M.I. Lerner, A.V. Pervikov, E.A. Glazkova, N.V. Svarovskaya, A.S. Lozhkomoev, S.G. Psakhie, Structures of binary metallic nanoparticles produced by electrical explosion of two wires from immiscible elements. Powder Technol. 288, 371–378 (2016)

    Article  CAS  Google Scholar 

  21. R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik. 127, 7143–7154 (2016)

    Article  CAS  Google Scholar 

  22. N. Shakeel, Optimization of rGO-PEI/Naph-SH/AgNWs/Frt/GOx nanocomposite anode for biofuel cell applications. Sci. Rep. 10, 1–10 (2020)

    Article  Google Scholar 

  23. M. Khan, M.H. Irfan, M. Israr, N. Rehman, T.J. Park, M.A. Basit, Comparative investigation of ZnO morphologies for optimal CdS quantum-dot deposition via pseudo-SILAR method. Chem. Phys. Lett. 744, 137223 (2020)

    Article  CAS  Google Scholar 

  24. D. Neena, K.K. Kondamareddy, H. Bin, D. Lu, P. Kumar, R.K. Dwivedi, V.O. Pelenovich, X.Z. Zhao, W. Gao, D. Fu, Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. Sci. Rep. 8, 1–12 (2018)

    Google Scholar 

  25. T.J. Whang, M.T. Hsieh, H.H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Appl. Surf. Scie. 258, 2796–2801 (2012)

    Article  CAS  Google Scholar 

  26. K.A. Isai, V.S. Shrivastava, Photocatalytic degradation of methylene blue using ZnO and 2% Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl. Sci. 1, 1247 (2019)

    Article  CAS  Google Scholar 

  27. Vijayakumar, S. Karthikeyeni, S. Vasanth, A. Ganesh, G. Bupesh, R. Ramesh, M. Manimegalai, P. Subramanian. Synthesis of silver-doped zinc oxide nanocomposite by pulse mode ultrasonication and its characterization studies. J. Nanoscie. (2013)

  28. Z. Zhang, F. Li, A. Meng, C. Xie, J. Xing, ZnO/Ag micro/nanospheres with enhanced photocatalytic and antibacterial properties synthesized by a novel continuous synthesis method. RSC Adv. 5, 612–620 (2015)

    Article  Google Scholar 

  29. S. Adhikari, A. Banerjee, N.K. Eswar, D. Sarkar, G. Madras, Photocatalytic inactivation of E coli by ZnO–Ag nanoparticles under solar radiation. RSC Adv. 5, 51067–51077 (2015)

    Article  CAS  Google Scholar 

  30. H.M. Naeem, S. Ijaz, M.H. Abbas, Y. Ahmed, N. Rehman, T.J. Park, M.A. Basit, HF-based surface modification for enhanced photobiological and photochemical performance of ZnO and ZnO/CdS hierarchical structures. Mater. Chem. Phys. 252, 123190 (2020)

    Article  CAS  Google Scholar 

  31. M. Ahmad, S.J.A. Zaidi, S. Zoha, M.S. Khan, M. Shahid, T.J. Park, M.A. Basit, Pseudo-SILAR assisted unique synthesis of ZnO/Ag2O nanocomposites for improved photocatalytic and antibacterial performance without cytotoxic effect. Colloids Surf A: Physicochem Eng Aspects 603, 125200 (2020)

    Article  CAS  Google Scholar 

  32. A. Chauhan, R. Verma, S. Kumari, A. Sharma, P. Shandilya, X. Li, R. Kumar, Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci. Rep. 10, 1–16 (2020)

    Article  Google Scholar 

  33. J. Shang, Y. Sun, T. Zhang, Z., Liu, Zhang, H. Enhanced antibacterial activity of Ag nanoparticle-decorated ZnO nanorod arrays. J. Nanomater, 2019, (2019)

  34. Y. Zhao, S. Li, Y. Zeng, Y. Jiang, Synthesis and properties of Ag/ZnO core/shell nanostructures prepared by excimer laser ablation in liquid. APL Mater. 3, 086103 (2015)

    Article  Google Scholar 

  35. A. Naskar, S. Lee, K.S. Kim, Easy one-pot low-temperature synthesized Ag-ZnO nanoparticles and their activity against clinical isolates of methicillin-resistant Staphylococcus Aureus. Front. Bioeng. Biotechnol. 8, 216 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been performed according to the Government research assignment for ISPMS SB RAS, Project No. III.23.2.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Bakina.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakina, O.V., Glazkova, E.A., Pervikov, A.V. et al. Electric explosion of wires as versatile method for antibacterial Janus-like ZnO–Ag nanoparticles preparation. J Mater Sci: Mater Electron 32, 10623–10634 (2021). https://doi.org/10.1007/s10854-021-05718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05718-8

Navigation