Skip to main content
Log in

Novel synthesis of nickel ferrite magnetic nanoparticles by an in‐liquid plasma

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles of nickel ferrites were successfully synthesized by the in-liquid plasma method. The synthesis process is performed in three different solutions. The anode material is made of iron and nickel powder by Spark Plasma Sintering (SPS) process. By discharging on the anode’s surface in the solution, a plasma forms on the electrode surface, and nanosize particles detached from the electrode and immediately oxidized into a ferrite spinel. Spectroscopic, morphological, structural, and magnetic characterization showed that the electrolyte type significantly affects nanoparticle features. The X-ray diffraction of nanoparticles confirms the formation of spinel NiFe2O4, and the highest crystallinity has belonged to the nanoparticles synthesized with ethanol and sodium hydroxide. Based on the results, the particles synthesized in the optimum solution are spherical with an average size of ~ 10 nm, and their specific surface area is significantly enhanced to 55.237 m2/g. A ferromagnetic property with 89.75 Oe coercivity and a saturation magnetization of 42.27 emu/g has been measured for the synthesized powders at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V. Sudheesh, N. Thomas, N. Roona, P. Baghya, V. Sebastian, Synthesis, characterization and influence of fuel to oxidizer ratio on the properties of spinel ferrite (MFe2O4, M = Co and Ni) prepared by solution combustion method. Ceram. Int. 43(17), 15002–15009 (2017)

    Article  CAS  Google Scholar 

  2. H. Yin, H. Too, G. Chow, The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26(29), 5818–5826 (2005)

    Article  CAS  Google Scholar 

  3. Y. Fu, Y. Wan, H. Xia, X. Wang, Nickel ferrite–graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries. J. Power Sources 213, 338–342 (2012)

    Article  CAS  Google Scholar 

  4. L. Babes, B. Denizot, G. Tanguy, J.J. Le Jeune, P. Jallet, Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212(2), 474–482 (1999)

    Article  CAS  Google Scholar 

  5. M.H. Habibi, F. Fakhri, Hydrothermal synthesis of nickel iron oxide nano-composite and application as magnetically separable photocatalyst for degradation of Solar Blue G dye. J. Mater. Sci.: Mater. Electron. 28(19), 14091–14096 (2017)

    CAS  Google Scholar 

  6. A. Sutka, The role of stoichiometry on gas response of nanostructured sol–gel auto combustion derived nickel ferrite. Sens. Lett. 11(10), 2010–2013 (2013)

    Article  CAS  Google Scholar 

  7. Y. Kinemuchi, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge. Thin solid films 407(1–2), 109–113 (2002)

    Article  CAS  Google Scholar 

  8. J. Zhu, D. Xiao, J. Li, X. Yang, Y. Wu, Characterization of FeNi3 alloy in Fe–Ni–O system synthesized by citric acid combustion method. Scr. Mater. 54(1), 109–113 (2006)

    Article  CAS  Google Scholar 

  9. L. Guo, X. Shen, X. Meng, Y. Feng, Effect of Sm3 + ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. J. Alloys Compd. 490(1–2), 301–306 (2010)

    Article  CAS  Google Scholar 

  10. S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb 3 + or Pr 3 + ions in cobalt–nickel ferrite. J. Mater. Sci.: Mater. Electron. 30(7), 6902–6909 (2019)

    CAS  Google Scholar 

  11. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater. Lett. 65(9), 1438–1440 (2011)

    Article  CAS  Google Scholar 

  12. F. Bensebaa, F. Zavaliche, P. L’ecuyer, R. Cochrane, T. Veres, Microwave synthesis and characterization of Co–ferrite nanoparticles. J. Colloid Interface Sci. 277(1), 104–110 (2004)

    Article  CAS  Google Scholar 

  13. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater. Res. Bull. 46(12), 2204–2207 (2011)

    Article  CAS  Google Scholar 

  14. C. Bousquet-Berthelin, D. Chaumont, D. Stuerga, Flash microwave synthesis of trevorite nanoparticles. J. Solid State Chem. 181(3), 616–622 (2008)

    Article  CAS  Google Scholar 

  15. N. Bao, L. Shen, Y. Wang, P. Padhan, A. Gupta, A facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 129(41), 12374–12375 (2007)

    Article  CAS  Google Scholar 

  16. S. Patange, S.E. Shirsath, S. Jadhav, K. Lohar, D. Mane, K. Jadhav, Rietveld refinement and switching properties of Cr3 + substituted NiFe2O4 ferrites. Mater. Lett. 64(6), 722–724 (2010)

    Article  CAS  Google Scholar 

  17. W.B. Cross, L. Affleck, M.V. Kuznetsov, I.P. Parkin, Q.A. Pankhurst, Self-propagating high-temperature synthesis of ferrites MFe 2 O 4 (M = Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field. J. Mater. Chem. 9(10), 2545–2552 (1999)

    Article  CAS  Google Scholar 

  18. H. Li, H. Wu, G. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol. 198(1), 157–166 (2010)

    Article  CAS  Google Scholar 

  19. C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 104(6), 1141–1145 (2000)

    Article  CAS  Google Scholar 

  20. T. Hirai, J. Kobayashi, I. Komasawa, Preparation of acicular ferrite fine particles using an emulsion liquid membrane system. Langmuir 15(19), 6291–6298 (1999)

    Article  CAS  Google Scholar 

  21. L. Chen, H. Dai, Y. Shen, J. Bai, Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J. Alloys Compd. 491(1–2), L33–L38 (2010)

    Article  CAS  Google Scholar 

  22. Y. Toriyabe, S. Watanabe, S. Yatsu, T. Shibayama, T. Mizuno, Controlled formation of metallic nanoballs during plasma electrolysis. Appl. Phys. Lett. 91(4), 041501 (2007)

    Article  CAS  Google Scholar 

  23. Y.K. Heo, S.Y. Lee, Effects of the gap distance on the characteristics of gold nanoparticles in nanofluids synthesized using solution plasma processing. Met. Mater. Int. 17(3), 431–434 (2011)

    Article  CAS  Google Scholar 

  24. Y. Hattori, S. Nomura, S. Mukasa, H. Toyota, T. Inoue, T. Usui, Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water. J. Alloys Compd. 578, 148–152 (2013)

    Article  CAS  Google Scholar 

  25. G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Nickel nanoparticles formation from solution plasma using edge-shielded electrode. Plasma Chem. Plasma Process. 31(5), 719 (2011)

    Article  CAS  Google Scholar 

  26. G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Surface morphology of a glow discharge electrode in a solution. J. Appl. Phys. 112(1), 013306 (2012)

    Article  CAS  Google Scholar 

  27. A. Lal, H. Bleuler, R. Wüthrich, Fabrication of metallic nanoparticles by electrochemical discharges. Electrochem. Commun. 10(3), 488–491 (2008)

    Article  CAS  Google Scholar 

  28. M. Tokushige, T. Nishikiori, M. Lafouresse, C. Michioka, K. Yoshimura, Y. Fukunaka, Y. Ito, Formation of FePt intermetallic compound nanoparticles by plasma-induced cathodic discharge electrolysis. Electrochim. Acta 55(27), 8154–8159 (2010)

    Article  CAS  Google Scholar 

  29. P. Pootawang, N. Saito, O. Takai, S.-Y. Lee, Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing. Nanotechnology 23(39), 395602 (2012)

    Article  CAS  Google Scholar 

  30. S. Samimi-Sedeh, E. Saebnoori, A. Talaiekhozani, M.A. Fulazzaky, M. Roestamy, A.M. Amani, Assessing the efficiency of sodium ferrate production by solution plasma process. Plasma Chem. Plasma Process. 39(4), 769–786 (2019)

    Article  CAS  Google Scholar 

  31. S.S. Sedeh, E. Saebnoori, Water treatment system, Google Patents (2018)

  32. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Boston, 1956).

    Google Scholar 

  33. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties. Ceram. Int. 42(2), 2741–2749 (2016)

    Article  CAS  Google Scholar 

  34. C. Li, X. Cao, W. Li, B. Zhang, L. Xiao, Co-synthesis of CuO-ZnO nanoflowers by low voltage liquid plasma discharge with brass electrode. J. Alloys Compd. 773, 762–769 (2019)

    Article  CAS  Google Scholar 

  35. Y. Nakasugi, G. Saito, T. Yamashita, T. Akiyama, Synthesis of nonstoichiometric titanium oxide nanoparticles using discharge in HCl solution. J. Appl. Phys. 115(12), 123303 (2014)

    Article  CAS  Google Scholar 

  36. G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Synthesis of copper/copper oxide nanoparticles by solution plasma. J. Appl. Phys. 110(2), 023302 (2011)

    Article  CAS  Google Scholar 

  37. G. Saito, S. Hosokai, T. Akiyama, S. Yoshida, S. Yatsu, S. Watanabe, Size-controlled Ni nanoparticles formation by solution glow discharge. J. Phys. Soc. Jpn. 79(8), 083501 (2010)

    Article  CAS  Google Scholar 

  38. Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, J. Meng, Preparation of ferrite MFe2O4 (M = Co, Ni) ribbons with nanoporous structure and their magnetic properties. J. Phys. Chem. B 112(36), 11292–11297 (2008)

    Article  CAS  Google Scholar 

  39. A.B. Rajput, S. Hazra, N.B. Krishna, P. Chavali, S. Datla, N.N. Ghosh, Preparation of NiFe2O4 nanopowder via EDTA precursor and study of its properties. Particuology 10(1), 29–34 (2012)

    Article  CAS  Google Scholar 

  40. S.A. Hoseini, S. Khademolhoseini, Investigation of the structural, optical and magnetic properties of nickel ferrite nanoparticles synthesized through modified sol–gel method. J. Mater. Sci.: Mater. Electron. 27(6), 5943–5947 (2016)

    Google Scholar 

  41. S. Balaji, R. Kalai Selvan, L. John Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Combustion synthesis and characterization of Sn4 + substituted nanocrystalline NiFe2O4. Mater. Sci. Eng. B 119(2), 119–124 (2005). https://doi.org/10.1016/j.mseb.2005.01.021

    Article  CAS  Google Scholar 

  42. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Organometallic Compounds (Wiley, New York, 1986).

    Google Scholar 

  43. Z. Zhou, J. Xue, J. Wang, H. Chan, T. Yu, Z. Shen, NiFe 2 O 4 nanoparticles formed in situ in silica matrix by mechanical activation. J. Appl. Phys. 91(9), 6015–6020 (2002)

    Article  CAS  Google Scholar 

  44. B.P. Jacob, A. Kumar, R. Pant, S. Singh, E. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles. Bull. Mater. Sci. 34(7), 1345–1350 (2011)

    Article  CAS  Google Scholar 

  45. S.V. Bhosale, P. Ekambe, S.V. Bhoraskar, V.L. Mathe, Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity. Appl. Surf. Sci. 441, 724–733 (2018)

    Article  CAS  Google Scholar 

  46. T. Shanmugavel, S.G. Raj, G.R. Kumar, G. Rajarajan, D. Saravanan, Cost effective preparation and characterization of nanocrystalline nickel ferrites (NiFe2O4) in low temperature regime. J. King Saud Univ. Sci. 27(2), 176–181 (2015)

    Article  Google Scholar 

  47. S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 18(3), 035602 (2007)

    Article  CAS  Google Scholar 

  48. H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015)

    Article  CAS  Google Scholar 

  49. H. Kargan, Synthesis of nickel ferrite nanoparticles by co-precipitation chemical method. Int. J. Phys. Sci. 8(18), 854–858 (2013)

    Article  CAS  Google Scholar 

  50. Y. Liang, Y. Che, Inorganic Thermodynamic Data Sheet (Northeastern University Press, Shenyang, 1993).

    Google Scholar 

  51. S.M. Aydoghmish, S. Hassanzadeh-Tabrizi, A. Saffar-Teluri, Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient photocatalysts for degradation of methylene blue dye. Ceram. Int. 45(12), 14934–14942 (2019)

    Article  CAS  Google Scholar 

  52. H. Sözeri, Z. Durmus, A. Baykal, Structural and magnetic properties of triethylene glycol stabilized ZnxCo1–xFe2O4 nanoparticles. Mater. Res. Bull. 47, 2442–2448 (2012). https://doi.org/10.1016/j.materresbull.2012.05.036

    Article  CAS  Google Scholar 

  53. K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Mater. Lett. 244, 186–191 (2019)

    Article  CAS  Google Scholar 

  54. P.B. Koli, K.H. Kapadnis, U.G. Deshpande, Nanocrystalline-modified nickel ferrite films: an effective sensor for industrial and environmental gas pollutant detection. J. Nanostruct. Chem. 9(2), 95–110 (2019)

    Article  CAS  Google Scholar 

  55. U. Kurtan, H. Güngüneş, H. Sözeri, A. Baykal, Synthesis and characterization of monodisperse NiFe2O4 nanoparticles. Ceram. Int. 42(7), 7987–7992 (2016)

    Article  CAS  Google Scholar 

  56. J. Lim, S.P. Yeap, H.X. Che, S.C. Low, Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 8(1), 381 (2013)

    Article  CAS  Google Scholar 

  57. B.V. Prasad, K. Ramesh, A. Srinivas, Structural and magnetic properties of nanocrystalline nickel ferrite (NiFe2O4) synthesized in sol-gel and combustion routes. Solid State Sci. 86, 86–97 (2018)

    Article  CAS  Google Scholar 

  58. C. Wei, Q. Ru, X. Kang, H. Hou, C. Cheng, D. Zhang, Self-template synthesis of double shelled ZnS-NiS1. 97 hollow spheres for electrochemical energy storage. Appl. Surf. Sci. 435, 993–1001 (2018)

    Article  CAS  Google Scholar 

  59. M.G. Naseri, M.H.M. Ara, E.B. Saion, A.H. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014)

    Article  CAS  Google Scholar 

  60. C.-S. Lin, C.-C. Hwang, T.-H. Huang, G.-P. Wang, C.-H. Peng, Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route. Mater. Sci. Eng. B 139(1), 24–36 (2007)

    Article  CAS  Google Scholar 

  61. J. Jiang, Y.-M. Yang, Facile synthesis of nanocrystalline spinel NiFe2O4 via a novel soft chemistry route. Mater. Lett. 61(21), 4276–4279 (2007)

    Article  CAS  Google Scholar 

  62. G. Dixit, J. Singh, R. Srivastava, H. Agrawal, R. Choudhary, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287 (2010)

    CAS  Google Scholar 

  63. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40(4), 5881–5887 (2014)

    Article  CAS  Google Scholar 

  64. M. George, A.M. John, S.S. Nair, P. Joy, M. Anantharaman, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Saebnoori.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, M., Saebnoori, E., Hassanzadeh-tabrizi, S.A. et al. Novel synthesis of nickel ferrite magnetic nanoparticles by an in‐liquid plasma. J Mater Sci: Mater Electron 32, 10424–10442 (2021). https://doi.org/10.1007/s10854-021-05698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05698-9

Navigation