Skip to main content

Advertisement

Log in

Microstructure and thermoelectric performance evaluation of p-type (Bi, Sb)2Te3 materials synthesized using mechanical alloying and spark plasma sintering process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, three p-type thermoelectric compounds, namely Bi0.5Sb1.5Te3, Bi0.3Sb1.7Te3, and Bi0.2Sb1.8Te3 were manufactured by mechanical milling and spark plasma sintering method. The effects of chemical composition on microstructural and thermoelectric properties were investigated. In this order, Bi, Te, and Sb powders with different contents were mechanically milled for 6 hours. Then, they were consolidated using a spark plasma sintering process (SPS) at 400 °C under 60 MPa pressure. The phase composition was analyzed using XRD with Cu-Kα radiation. The microstructural characterization of the specimens was performed using scanning electron microscopy. Moreover, thermoelectric properties of the samples, including the Seebeck coefficient, electrical and thermal conductivity, power factor, and ZT were determined. Analysis of XRD patterns of fabricated compositions indicated that a single phase with a rhombohedral lattice structure was synthesized in all conditions. In addition, SEM results showed an integrated structure with a few scattered micropores. The thermoelectric results confirmed that Bi0.5Sb1.5Te3 demonstrates the lowest thermal conductivity (0.85 W/m K), the highest electrical conductivity (4.48 S/cm), and the maximum figure of merit (1.03 × 10−2) at room temperature. Therefore, it is the best option among the fabricated compounds to be utilized as thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.G. Bulusu, Walker, Review of electronic transport models for thermoelectric materials. Superlattices Microstruct. 44, 1–36 (2008). https://doi.org/10.1016/j.spmi.2008.02.008

    Article  CAS  Google Scholar 

  2. C. Van der Rest, V. Dupont, J.-P. Erauw, P.J. Jacques, On the reactive sintering of Heusler Fe2VAl-based thermoelectric compounds. Intermetallics. 125, 106890 (2020). https://doi.org/10.1016/j.intermet.2020.106890

    Article  CAS  Google Scholar 

  3. Y. Sb, G. Zhang, J. Xu, F. Mi, Z. Han, C. Wang, Ge, Hydrothermal synthesis and thermoelectric properties of nanostructures. Mater. Res. Bull. 46, 760–764 (2011). https://doi.org/10.1016/j.materresbull.2010.11.024

    Article  CAS  Google Scholar 

  4. S. Bano, A. Kumar, B. Govind, A.H. Khan, A. Ashok, D.K. Misra, Room temperature Bi2Te3-based thermoelectric materials with high performance. J. Mater. Sci. Mater. Electron. 31, 8607–8617 (2020). https://doi.org/10.1007/s10854-020-03396-6

    Article  CAS  Google Scholar 

  5. P. Dharmaiah, H. Kim, C. Lee, S. Hong, Influence of powder size on thermoelectric properties of p-type 25%Bi2Te3-75%Sb2Te3 alloys fabricated using gas atomization and spark-plasma sintering. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.05.340

    Article  Google Scholar 

  6. H. Zhang, F. Ye, Y. Hu, J. Liu, Y. Zhang, Y. Wu, Z. Hu, The investigation of thermal properties on multilayer Sb2Te3/Au thermoelectric material system with ultra-thin Au interlayers. Superlattices Microstruct. 89, 312–318 (2016). https://doi.org/10.1016/j.spmi.2015.11.022

    Article  CAS  Google Scholar 

  7. Y. Saberi, S.A. Sajjadi, H. Mansouri, Comparison of characteristics of Bi2Te3 and Bi2Te2.7Se0.3 thermoelectric materials synthesized by hydrothermal process. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04435-y

    Article  Google Scholar 

  8. P. Dharmaiah, S.J. Hong, Hydrothermal method for the synthesis of Sb2Te3, and Bi0.5Sb1.5Te3 nanoplates and their thermoelectric properties. Int. J. Appl. Ceram. Technol. 15, 132–139 (2018). https://doi.org/10.1111/ijac.12762

    Article  CAS  Google Scholar 

  9. G.S. Hegde, A.N. Prabhu, R.Y. Huang, Y.K. Kuo, Reduction in thermal conductivity and electrical resistivity of indium and tellurium co-doped bismuth selenide thermoelectric system. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04383-7

    Article  Google Scholar 

  10. L. Han, S.H. Spangsdorf, N.V. Nong, L.T. Hung, Y.B. Zhang, H.N. Pham, Y.Z. Chen, A. Roch, L. Stepien, N. Pryds, Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride. RSC Adv. 6, 59565–59573 (2016). https://doi.org/10.1039/c6ra06688g

    Article  CAS  Google Scholar 

  11. Y. Dou, X. Yan, Y. Du, J. Xu, D. Li, Thermoelectric properties of Bi0.4Sb1.6Te3-based composites with silicon nano-inclusions. J. Mater. Sci. Mater. Electron. 31, 4808–4814 (2020). https://doi.org/10.1007/s10854-020-03042-1

    Article  CAS  Google Scholar 

  12. W. Wang, B. Poudel, J. Yang, D.Z. Wang, Z.F. Ren, High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. J Am Chem Soc 127, 13792–13793 (2005)

    Article  CAS  Google Scholar 

  13. S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, H.H. Hng, P-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 2010–2013 (2010). https://doi.org/10.1063/1.3427427

    Article  CAS  Google Scholar 

  14. A. Kadhim, A. Hmood, H.A. Hassan, Physical properties of Bi2(Te, Se)3and Bi2Se1.2Te1.8 prepared sing solid-state microwave synthesis. Mater. Lett. 65, 3105–3108 (2011). https://doi.org/10.1016/j.matlet.2011.06.069

    Article  CAS  Google Scholar 

  15. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science (2008). https://doi.org/10.1126/science.1155140

    Article  Google Scholar 

  16. B. Madavali, H.S. Kim, C.H. Lee, D. Soo Kim, S.J. Hong, High thermoelectric figure of merit in p-type Bi2Te3)x−(Sb2Te3)1−x alloys made from element-mechanical alloying and spark plasma sintering. J. Electron. Mater. 48, 416–424 (2019). https://doi.org/10.1007/s11664-018-6706-7

    Article  CAS  Google Scholar 

  17. M.G. Kanatzidis, S.D. Mahanti, and T.P. Hogan. Chemistry, physics, and materials science of thermoelectric materials: beyond bismuth telluride. Fundamental Materials Research. ISBN 978-1-4613-4872-6 ISBN 978-1-4419-9278-9 (eBook). https://doi.org/10.1007/978-1-4419-9278-9.

  18. D.C. Cho, S.Y. Kim, C.H. Lim, W.S. Cho, H. Lee, S.Y. Shin, Z.A. Munir, Thermoelectric properties of P-Type Bi0.5Sb1.5Te3 compounds prepared by spark plasma sintering method. J. Ceram. Trans. (2006). https://doi.org/10.1002/9780470082751.ch25

    Article  Google Scholar 

  19. H. Li, H. Jing, Y. Han, G. Lu, L. Xu, Intermetallics Effects of mechanical alloying process and sintering methods on the microstructure and thermoelectric properties of bulk Bi0.5Sb1.5Te3 alloy. Intermetallics. 43, 16–23 (2013). https://doi.org/10.1016/j.intermet.2013.07.007

    Article  CAS  Google Scholar 

  20. C. Chen, D. Liu, B. Zhang, J. Li, Enhanced thermoelectric properties obtained by compositional optimization in p-type BixSb2−xTe3 fabricated by mechanical alloying and spark plasma sintering. 40(5), 942–947 (2011). https://doi.org/10.1007/s11664-010-1463-2

  21. X.A. Fan, J.Y. Yang, R.G. Chen, W. Zhu, S.Q. Bao, Phase transformation and thermoelectric properties of p-type (Bi2Te3)0.25(Sb2Te3)0.75 prepared by mechanical alloying and hot pressing. Mater. Sci. Eng. A. 438–440, 190–193 (2006). https://doi.org/10.1016/j.msea.2005.12.055

  22. M. Kitamura, K. Hirota, K. Hasezaki, Relationships between thermoelectric properties and milling rotational speed on bi0.3Sb1.7Te3.0 thermoelectric materials. Mater. Trans. 59, 1225–1232 (2018). https://doi.org/10.2320/matertrans.MF201703

  23. Z. Chen, M.Y. Lin, G.D. Xu, S. Chen, J.H. Zhang, M.M. Wang, Hydrothermal synthesized nanostructure Bi-Sb-Te thermoelectric materials. J.Alloys Compd. 588, 384–387 (2014). https://doi.org/10.1016/j.jallcom.(2013).11.065

  24. S.J. Madavali, Hong, Enhanced thermoelectric properties of p-type Bi0.5Sb1.5Te3 thermoelectric materials by mechanical alloying and spark plasma sintering. J. Electron. Mater. 45, 6059–6066 (2016). https://doi.org/10.1007/s11664-016-5011-6

  25. M. Likha, P. Dharmaiah, B. Madavali, C. Lee, D. Shin, G. Song, K. Lee, S. Hong, Intermetallics Oxide formation mechanism and its effect on the microstructure and thermoelectric properties of p-type Bi0.5Sb1.5Te3 alloys. Intermetallics. 103, 23–32 (2018). https://doi.org/10.1016/j.intermet.2018.09.015

  26. L. Liao, C. Wu, L. Liao, Wu, Enhancement of carrier transport properties of BixSb2−xTe3 compounds by electrical sintering process Enhancement of carrier transport properties of BixSb2−xTe3 compounds by electrical sintering process. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.3196315

    Article  Google Scholar 

  27. A. Pakdel, Q. Guo, V. Nicolosi, T. Mori, Enhanced thermoelectric performance of Bi-Sb-Te/Sb2O3 nanocomposites by energy filtering effect. J. Mater. Chem. A. 6, 21341–21349 (2018). https://doi.org/10.1039/c8ta08238c

    Article  CAS  Google Scholar 

  28. C. Robinson, Preparation of bismuth telluride based thermoelectric nanomaterials via low-energy ball milling and their property characterizations. Open Access Theses. 601 (2015). https://docs.lib.purdue.edu/open_access_theses/601

  29. S. Lim, J. Kim, B. Kwon, S. Keun, H. Park, K. Lee, J. Min, W. Jun, D. Kim, D. Hyun, J. Kim, S. Baek, Effect of spark plasma sintering conditions on the thermoelectric. J. Alloys Compd. 678, 396–402 (2016). https://doi.org/10.1016/j.jallcom.2016.03.284

    Article  CAS  Google Scholar 

  30. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering (John Wiley and Sons, Inc, London, 2018), p 992. ISBN: 978-1-119-40549-8

  31. S.J. Hong, K.S. Hwang, J.W. Byeon, M.K. Lee, C.K. Rhee, B.S. Chun, The effect of powder size on thermoelectric properties of 95%Bi2Te3-5%Bi2Se3 alloy. Solid State Phenom. 119, 271–274 (2007)

  32. D.M. Lee, C.H. Lim, S.Y. Shin, D.C. Cho, C.H. Lee, Thermoelectric properties of p-type Bi0.5Sb1.5Te3 compounds fabricated by spark plasma sintering. J. Electroceram. 17, 879–883 (2006). https://doi.org/10.1007/s10832-006-6807-1

    Article  CAS  Google Scholar 

  33. Y. Pan, T.R. Wei, Q. Cao, J.F. Li, Mechanically enhanced p- and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 197, 75–81 (2015). https://doi.org/10.1016/j.mseb.2015.03.011

    Article  CAS  Google Scholar 

  34. K. Hyoung, W. Ho, H. Kim, K. Lee, J. Wook, J. Yoo, J. Kim, S. Wng, S. Kim, Scripta Materialia Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively-suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb1.5Te3 alloys, Scr. Mater. 160, 15–19 (2019). https://doi.org/10.1016/j.scriptamat.2018.09.038

    Article  CAS  Google Scholar 

  35. N. Mntungwa, P.V.S.R. Rajasekhar, K. Ramasamy, N. Revaprasadu, A simple route to Bi2Se3 and Bi2Te3 nanocrystals, Superlattices Microstruct. 69, 226–230 (2014). https://doi.org/10.1016/j.spmi.2014.02.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from Ferdowsi University of Mashhad (FUM) under the research scheme No. 3/48155. Moreover, assistance of Prof. Muhammet S. Toprak and Mr. Bejan Hamawandi, from the Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden, and Sedat Ballikaya from the Department of Physics, Istanbul University, Istanbul, Turkey are widely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abdolkarim Sajjadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, H., Sajjadi, S.A., Babakhani, A. et al. Microstructure and thermoelectric performance evaluation of p-type (Bi, Sb)2Te3 materials synthesized using mechanical alloying and spark plasma sintering process. J Mater Sci: Mater Electron 32, 9858–9871 (2021). https://doi.org/10.1007/s10854-021-05645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05645-8

Navigation