Skip to main content

Advertisement

Log in

Two-component room temperature vulcanized silicone-rubber (RTV2) properties modification: effect of aluminum three hydrate and nanosilica additions on the microstructure, electrical, and mechanical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study focused on investigating the effect of adding aluminum three hydrate (ATH) and various amounts of silica nanoparticles on electrical, mechanical, hydrophobicity, and flame retardancy properties of the two-component room temperature vulcanized silicone rubber (RTV2). Electrical results indicated the dielectric constant and dielectric loss of the composites were higher than net RTV2, also the composites showed higher volume resistance than net RTV2. However, adding SiO2 nanoparticles and ATH reduced the surface resistivity of the RTV2 from 16.71 (TΩ) to 15.66 (TΩ) in RTV2 + ATH and 15.79 (TΩ) in RTV2 + ATH + 3%SiO2 composites. Evaluation of mechanical properties showed that the elastic modulus in net RTV2 (0.00405 MPa) enhanced to 0.00484 MPa in RTV2 + ATH and 0.0098 MPa in RTV2 + ATH + 3%SiO2. Similarly, hardness of the composites showed a rising trend by increasing the filler content. Also, there was no improvement in hydrophobicity of the composites without SiO2 nanoparticles compared with net RTV2, but adding silica nanoparticles enhanced the hydrophobicity and contact angles in composites. An improvement in flame retardancy of the composite was obtained by a decrease in the torch affected (burned) zone when ATH and silica were incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. J. Looms, Insulators for High Voltages (IET, London, 1988).

    Google Scholar 

  2. S. Gubanski, R. Hartings, IEEE Electr. Insul. Mag. 11, 24 (1995)

    Google Scholar 

  3. H. Gao, Z. Jia, Z. Guan, L. Wang, K. Zhu, IEEE Trans. Power Delivery 22, 1117 (2007)

    CAS  Google Scholar 

  4. G. Heger, H. Vermeulen, J. Holtzhausen, W. Vosloo, IEEE Trans. Dielectr. Electr. Insul. 17, 513 (2010)

    CAS  Google Scholar 

  5. I. Ramirez-Vazquez, J.L. Fierro-Chavez, Electrical Insulation and Dielectric Phenomena, 1999 Annual Report Conference on IEEE (IEEE, Austin, 1999).

    Google Scholar 

  6. T. Kikuchi, S. Nishimura, M. Nagao, K. Izumi, Y. Kubota, M. Sakata, IEEE Trans. Dielectr. Electr. Insul. 6, 548 (1999)

    CAS  Google Scholar 

  7. K.O. Papailiou, F. Schmuck, Silicone Composite Insulators: Materials, Design, Applications (Springer, Berlin, 2012).

    Google Scholar 

  8. R. Sarathi, R. Sahu, P. Rajeshkumar, Mater. Sci. Eng. A 445, 567 (2007)

    Google Scholar 

  9. G. Momen, M. Farzaneh, Rev. Adv. Mater. Sci 27, 1 (2011)

    CAS  Google Scholar 

  10. E. Cherney, A. El-Hag, S. Li et al., IEEE Trans. Dielectr. Electr. Insul. 20, 237 (2013)

    CAS  Google Scholar 

  11. E. Cherney, M. Marzinotto, R. Gorur et al., IEEE Trans. Dielectr. Electr. Insul. 21, 253 (2014)

    CAS  Google Scholar 

  12. M.E. Ibrahim, N.A. Sabiha, M.A. Izzularab, IEEE Trans. Dielectr. Electr. Insul. 21, 2156 (2014)

    Google Scholar 

  13. D. Pylarinos, K. Siderakis, E. Thalassinakis, IEEE Electr. Insul. Mag. 31, 23 (2015)

    Google Scholar 

  14. T. Nakamura, M. Kozako, M. Hikita, R. Inoue, T. Kondo, Solid Dielectrics (ICSD), 2013 IEEE International Conference on IEEE (IEEE, Bologna, 2013).

    Google Scholar 

  15. S.-H. Kim, E.A. Cherney, R. Hackam, IEEE Trans. Electr. Insul. 27, 610 (1992)

    CAS  Google Scholar 

  16. S.A. Seyedmehdi, H. Zhang, J. Zhu, Appl. Surf. Sci. 258, 2972 (2012)

    CAS  Google Scholar 

  17. S. Kumagai, N. Yoshimura, IEEE Trans. Dielectr. Electr. Insul. 6, 211 (1999)

    CAS  Google Scholar 

  18. G. Xiao, M. Shanahan, J. Polym. Sci., Part B: Polym. Phys. 35, 2659 (1997)

    CAS  Google Scholar 

  19. H. Shang, Y. Wang, S. Limmer, T. Chou, K. Takahashi, G. Cao, Thin Solid Films 472, 37 (2005)

    CAS  Google Scholar 

  20. M. Piah, A. Darus, A. Hassan, J. Ind. Technol. 13, 27 (2004)

    Google Scholar 

  21. B. Kandola, A. Horrocks, Spec. Publ. Royal Soc. Chem. 224, 395 (1998)

    CAS  Google Scholar 

  22. S.M. Ghouse, K. Vijayarekha, Int. J. Mech. Eng. Technol. 8, 8 (2017)

    Google Scholar 

  23. L. Meyer, Transmission and Distribution Conference and Exposition: Latin America, 2004 IEEE/PESIEEE (IEEE, Piscataway, 2004).

    Google Scholar 

  24. R. Omranipour, L. Meyer, S. Jayaram, A. Cherney, Electrical Insulation and Dielectric Phenomena, 2002 Annual Report Conference on IEEE (IEEE, Cancun, 2002).

    Google Scholar 

  25. H. Cochrane, C. Lin, Rubber Chem. Technol. 66, 48 (1993)

    CAS  Google Scholar 

  26. K. Fuad, B. Barua, M.C. Saha, T. Robison, S. Wells, ASME 2013 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, New York, 2013).

    Google Scholar 

  27. T. Takahashi, J. Kaschta, H. Münstedt, Rheol. Acta 40, 490 (2001)

    CAS  Google Scholar 

  28. D. Ghosh, S. Bhandari, T.K. Chaki, D. Khastgir, RSC Adv. 5, 57608 (2015)

    CAS  Google Scholar 

  29. H. Khan, M. Amin, M. Ali, M. Iqbal, M. Yasin, Turk. J. Electr. Eng. Comput. Sci. 25, 1426 (2017)

    Google Scholar 

  30. D.C. Bezerra, I.P. Almirall, E.G. da Costa, M. Costa, A.C. Figueiredo, E.M. Araújo, Mater. Sci. Forum 820, 405 (2015)

    Google Scholar 

  31. L. Wu, X. Wang, L. Ning, J. Han, Z. Wan, M. Lu, J. Appl. Biomater. Funct. Mater. 14, 11 (2016)

    Google Scholar 

  32. H. Khan, M. Amin, A. Ahmad, M. Yasin, Applied Sciences and Technology (IBCAST), 2017 14th International Bhurban Conference on IEEE (IEEE, Islamabad, 2017).

    Google Scholar 

  33. F. Farhang, M. Ehsani, S.H. Jazayeri, Iran. Polym. J. (English) 18, 149 (2009)

    CAS  Google Scholar 

  34. J. Li, Y. Zhao, J. Hu, L. Shu, X. Shi, J. Adhes. Sci. Technol. 26, 665 (2012)

    CAS  Google Scholar 

  35. G. Wang, M. Lu, H. Yang, Y. Zhao, L. Wu, Properties and Applications of Dielectric Materials (ICPADM), 2015 IEEE 11th International Conference on the IEEE (IEEE, Sydney, 2015).

    Google Scholar 

  36. M.T. Nazir, B. Phung, M. Hoffman, IEEE Trans. Dielectr. Electr. Insul. 23, 2804 (2016)

    CAS  Google Scholar 

  37. H. Khan, M. Amin, A. Ahmad, M. Yasin, J. Elastom. Plast. 50, 501 (2018)

    CAS  Google Scholar 

  38. J. Sun, Z. Xu, W. Li, X. Shen, Nanomaterials 7, 102 (2017)

    Google Scholar 

  39. N.-K. Park, H.-Y. Choi, D.-H. Kim et al., J. Cryst. Growth 373, 88 (2013)

    CAS  Google Scholar 

  40. D. Yang, W. Zhang, B. Jiang, Ceram. Int. 39, 1575 (2013)

    CAS  Google Scholar 

  41. A. El-Hag, L. Simon, S. Jayaram, E. Cherney, IEEE Trans. Dielectr. Electr. Insul. 13, 122 (2006)

    CAS  Google Scholar 

  42. R. Tchoudakov, O. Breuer, M. Narkis, A. Siegmann, Polym. Eng. Sci. 36, 1336 (1996)

    CAS  Google Scholar 

  43. R. Taipalus, T. Harmia, M. Zhang, K. Friedrich, Compos. Sci. Technol. 61, 801 (2001)

    CAS  Google Scholar 

  44. Z.-M. Dang, Y.-H. Zhang, S.-C. Tjong, Synth. Met. 146, 79 (2004)

    CAS  Google Scholar 

  45. D.V. Ajalesh Balachandran Nair, E.P. Ayswarya, J. Rani, N. Changwoon, J. Adv. Nanomater. (2017). https://doi.org/10.22606/jan.2017.22001

    Article  Google Scholar 

  46. M. Pradeep, N. Vasudev, P. Reddy, D. Khastgir, J. Appl. Polym. Sci. 104, 3505 (2007)

    CAS  Google Scholar 

  47. B. Du, H. Xu, IEEE Trans. Dielectr. Electr. Insul. 21, 511 (2014)

    CAS  Google Scholar 

  48. L.H. Meyer, S.H. Jayaram, E.A. Cherney, IEEE Trans. Dielectr. Electr. Insul. 12, 1201 (2005)

    CAS  Google Scholar 

  49. S. Kemaloglu, G. Ozkoc, A. Aytac, Thermochim. Acta 499, 40 (2010)

    CAS  Google Scholar 

  50. S Guide (1992) Swedish Transmission Research Institute

  51. M. Sain, S. Park, F. Suhara, S. Law, Polym. Degrad. Stab. 83, 363 (2004)

    CAS  Google Scholar 

  52. C. Jiao, J. Zhuo, X.J.P. Chen, Rubber Compos. 42, 374 (2013)

    CAS  Google Scholar 

  53. Y. Zhang, J. He, R. Yang, Polym. Degrad. Stab. 125, 140 (2016)

    CAS  Google Scholar 

  54. K. Papailiou, F. Schmuck, Silicone Composite Insulators (Springer, Berlin, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Zolriasatein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolriasatein, A., Navazani, S., Abadchi, M.R. et al. Two-component room temperature vulcanized silicone-rubber (RTV2) properties modification: effect of aluminum three hydrate and nanosilica additions on the microstructure, electrical, and mechanical properties. J Mater Sci: Mater Electron 32, 8903–8915 (2021). https://doi.org/10.1007/s10854-021-05562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05562-w

Navigation