Abstract
Gadolinium (Gd)-doped perovskite SrTiO3 combining with Al2O3, Al2O3−Sr(1−x)GdxTiO3 (x varying from 0 to 0.3 in steps of 0.1) composite ceramics was synthesized by hot-press sintering in a vacuum. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), four-probe testing instrument, and vector network analyzer were utilized to study their phase and composition characteristics, micromorphology, electrical conductivity, electromagnetic and microwave-absorbing properties, respectively. The XRD, SEM, and EDS results demonstrated that Gd atoms were successfully doped into SrTiO3 crystal and substituted the Sr sites. As a result, Al2O3−Sr(1−x)GdxTiO3 with x = 0.2, which has the advantage of an ultra-thin thickness (0.341 mm), exhibits excellent absorbing properties with a broad bandwidth (90% microwave absorption) of 4.07 GHz in the X band. Furthermore, the present investigation illustrated that Al2O3−Sr(1−x)GdxTiO3 (x = 0.1, 0.2, and 0.3) could be applied in the X band for microwave absorption, with broadband width and ultra-thin thickness (≤ 0.35 mm), by controlling the molar ratios of Gd and the thickness.
This is a preview of subscription content, access via your institution.







References
Q. Yu, W.C. Nie, C.F. Liu, P. Chen, H.L. Chen, Y.Y. Wang, J. Mater. Sci.-Mater. Electon. 31, 22616–22628 (2020)
X. Zhang, Y. Huang, P. Liu, Nano-Micro Lett. 8, 131–136 (2016)
P. Albella, R. Alcaraz de la Osa, F. Moreno, S.A. Maier, ACS Photonics 1, 524–529 (2014)
Y. Atassi, X. Fun, J. Mater. Sci-Mater Electron. 31, 21948–21958 (2020)
X. Wang, F. Pan, Z. Xiang, Q.W. Zeng, K. Pei, R.C. Che, W. Lu, Carbon 157, 130–139 (2020)
H.X. Zhang, Z.R. Jia, A.L. Feng, Z.H. Zhou, C.H. Zhang, K.K. Wang, N. Liu, G.L. Wu, Compos. Commun. 19, 42–50 (2020)
H.J. Wei, X.W. Yin, F.R. Jiang, Z.X. Hou, L.F. Cheng, L.T. Zhang, J. Alloys Compod. 823, 153864 (2020)
Y. Guo, X. Jian, L. Zhang, C.H. Mu, L.J. Yin, J.L. Xie, N. Mahmood, S.X. Dou, R.C. Che, L.J. Deng, Chem. Eng. J. 384, 123371 (2020)
D.J. Kok, K. Irmscher, M. Naumann, C. Guguschev, Z. Galazka, R. Uecker, Phys. Status Solidi A 212, 1880–1887 (2015)
L.M. Yao, Z.B. Pan, J.W. Zhai, G.Z. Zhang, Z.Y. Liu, Y.H. Liu, Composites A 109, 48–54 (2018)
T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, J. Mol. Catal. A 312, 97–106 (2009)
P. Jayabal, V. Sasirekha, J. Mayandi, K. Jeganathan, V. Ramakrishnan, J. Alloys Compd. 586, 456–461 (2014)
M.T. Dylla, J. Jiahong Kuo, I. Witting, G. Jeffrey Snyder, Adv. Mater. Interfaces 6, 1900222 (2019)
S. Hossein Hosseini, P. Zamani, S.Y. Mousavi, J. Alloys Compd. 644, 423–429 (2015)
C.C. Chang, Y.C. Chen, G.P. Wang, C.C. Hwang, C.C. Yeh, J. Chin. Chem. Soc.-Taip. 57, 976–981 (2010)
T.L. Ivanova, V.V. Gagulin, Ferroelectrics 265, 241–246 (2002)
S. Hossein Hosseini, P. Zamani, J. Magn. Magn. Mater. 397, 205–212 (2016)
A.A. Yaremchenko, J. Macías, A.V. Kovalevsky, B.I. Arias-Serrano, J.R. Frade, J. Power Sources 474, 228531 (2020)
Q.X. Fu, S.B. Mi, E. Wessel, F. Tietz, J. Eur. Ceram. Soc. 28, 811–820 (2008)
R.P. Li, C. Zhang, J.H. Liu, J.W. Zhou, L. Xu, Mater. Res. Express 6, 102006 (2019)
S. Kobayashi, Y. Ikuhara, T. Mizoguchi, Phys. Rev. B 98, 134114 (2018)
Q.L. Wen, W.C. Zhou, H. Gao, Y.Y. Zhou, F. Luo, D.M. Zhu, Z.B. Huang, Y.C. Qing, Ceram. Int. 44, 12210–12215 (2018)
S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 425–435 (2016)
S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Ceram. Int. 46, 17186–17196 (2020)
L. Fang, W. Dong, F.G. Zheng, M.R. Shen, J. Appl. Phys. 112, 034114 (2012)
R.Y. Jing, X.M. Chen, H.L. Lian, X.S. Qiao, X.J. Shao, J.P. Zhou, J. Eur. Ceram. Soc. 38, 3111–3117 (2018)
C.L. Wang, Y.H. Jin, L.F. Yuan, H.Y. Wu, G.F. Ju, Z.Z. Li, D. Liu, Y. Lv, L. Chen, Y.H. Hu, Chem. Eng. J. 374, 992–1004 (2019)
G. Szabó, J. Barabás, S. Bogdán, Z. Németh, B. Sebők, G. Kiss, Maxillofac. Plast. Reconstr. Surg. 37, 34 (2015)
C.A. Stergiou, I. Manolakis, T.V. Yioultsis, G. Litsardakis, J. Magn. Magn. Mater. 322, 1532–1535 (2010)
Y.C. Qing, X. Wang, Y.Y. Zhou, Z.B. Huang, F. Luo, W.C. Zhou, Compos. Sci. Technol. 102, 161–168 (2014)
K.J. Vinoy, R.M. Jha, Radar Absorbing Materials, 1st edn. (Springer, Boston, 1996), pp. 41–43
L. Kong, X.W. Yin, L.T. Zhang, L.F. Cheng, J. Am. Ceram. Soc. 95, 1–8 (2012)
C. Pahwa, S.B. Narang, P. Sharma, J. Magn. Magn. Mater. 484, 61–66 (2019)
J.S. Li, S.C. Wang, C.C. Hwang, Mater. Express 10, 1–9 (2020)
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Grant No. 51701148) and Natural Science Foundation of Shaanxi Province (Grant Nos. 2019JQ-916 and 2020JQ-912).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, Y., Yang, C., Li, R. et al. Ultra-thin Al2O3−Sr(1−x)GdxTiO3 composite ceramics with high microwave absorption performance. J Mater Sci: Mater Electron 32, 8788–8797 (2021). https://doi.org/10.1007/s10854-021-05550-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-021-05550-0