Skip to main content
Log in

Influence of Ho3+ substitution on structural and magnetic properties of Mg–Mn ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline nano-magnetic pure and Ho3+-substituted Mg–Mn ferrite [Mg0.90Mn0.10Fe(2−x)HoxO4 (x = 0, 0.1, 0.2, and 0.3)] nanoparticles were synthesized by sol–gel combustion method. The physicochemical properties of samples were analyzed using various characterization techniques such X-ray diffractometer, Fourier transform infrared spectroscopy (FTIR), Mossbaur spectroscopy, vibrating sample magnetometer, field emission scanning electron microscope (FESEM) to identify the crystalline phase, functional groups, surface morphology, and magnetic behavior. The structural studies revealed that all the compositions showed pure phase formation of ferrite nanoparticles without any secondary phases and exhibited a cubic crystalline structure with \(Fd\stackrel{-}{3}m\) space group. FTIR spectra displayed the high-frequency peak observed at 554 cm−1 belonging to Fe–O bending, which confirmed the formation of pristine and Ho3+ modified spinel Mg–Mn ferrite nanoparticles. FESEM micrographs depicted the pseudo-spherical and granular morphology with agglomerated regions and energy dispersive X-ray spectra showed the elemental compositions present in the prepared nanoparticles confirming the high purity of the synthesized samples. EPR spectra illustrated the magnetic nature of pure and Ho3+-substituted Mg–Mn ferrite nanoparticles and displayed strong inter-dipolar interactions. Mössbauer spectra showed that the quadrupole shift increased with increasing Ho3+ content in the composition. All the compositions exhibited superparamagnetic behavior and it was observed that the value of saturation magnetization decreased with Ho3+ intrusion in the crystal framework of Mg–Mn ferrites as depicted by magnetic hysteresis loops. The observed results of the present study are significant and useful for their effective utilization in biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.P. Reddy, G. Kim, D.S. Yoo, W. Madhuri, N.R. Reddy, K.V.S. Kumar, R.R. Reddy, Characterization and electromagnetic studies on NiZn and NiCuZn ferrites prepared by microwave sintering technique. Mater. Sci. Appl. 3, 628–632 (2012)

    Google Scholar 

  2. G. Kumar, J. Shah, R.K. Kotnala, V.P. Singh, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Superparamagnetic behaviour and evidence of weakening in super-exchange interactions with the substitution of Gd3+ ions in the Mg–Mn nanoferrite matrix. Mat. Res. Exp. 63, 216–225 (2015)

    CAS  Google Scholar 

  3. N.H. Hur, E.K. Lee, J.Y. Park, J. Dho, Effects of the grain boundary on thecoercevity of barium ferrite BaFe12O19. J. Magn. Magn. Mater. 285, 164–168 (2005)

    Article  Google Scholar 

  4. X. He, G. Song, J. Zhu, Non-stoichiometric NiZn ferrite by sol–gel processing. Mater. Lett. 59, 1941–1944 (2005)

    Article  CAS  Google Scholar 

  5. M.G. Naseri, E.B. Saion, Crystallization in spinel ferrite nanoparticles, in Advances in Crystallization Process. (Intech, Croatia, 2012), pp. 349–380

    Google Scholar 

  6. M.F. Kuo, Y.H. Hung, J.Y. Huang et al., Substitution effects on magnetic properties of Mg1.3xMnxAlyFe1.8yO4 ferrites. API Adv. 7(5), 2158–3226 (2017)

    Google Scholar 

  7. Z.A. Sahar, S.M. Maryam, S.N. Masoud, Nd2Sn2O7 nanostructures as highly efficient visible light photocatalyst: green synthesis using pomegranate juice and characterization. J. Clean. Prod. 198, 11–18 (2018)

    Article  Google Scholar 

  8. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S. KhamenehAsl, Gh. Yousef, L. Karimi, Magnetic and structural properties of nano sized Dy-doped cobaltferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)

    Article  CAS  Google Scholar 

  9. N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus, Effects of the rare-earth ions on some properties of a nickel–zinc ferrite. J. Phys. Condens. Matter 6, 5707–5716 (1994)

    Article  CAS  Google Scholar 

  10. N. Rezlescu, E. Rezlescu, P.D. Popa, C. Corneliu Doroftei, M. Ignat, Scandium substituted nickel–cobalt ferrite nanoparticles for catalyst applications. Appl. Catal. B Environ. 158–159, 70–75 (2014)

    Article  Google Scholar 

  11. N. Lwin, R. Othman, S. Sreekantan, M.N. Ahmad, Fauzi, Study on the structural and electromagnetic properties of Tm-substituted Mg–Mn ferrites by a solution combustion method. J. Magn. Magn. Mater. 385, 433–440 (2015)

    Article  CAS  Google Scholar 

  12. I. Iliev, I. Nedkov, V. Hristova, Influence of scandium substitution on properties of Mn-Mg microwave ferrites. J. Magn. Magn. Mater. 93, 433–437 (1990)

    Article  Google Scholar 

  13. K. Kamala Bharathi, G. Markandeyulu, C.V. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm- and Ho-substituted nickel ferrites. J. Phys. Chem. C. 115, 554–560 (2011)

    Article  Google Scholar 

  14. I. Somnath, R.K. Sharma, M. Kotnala, A. Singh, P. Kumar, V.P. Dhiman, K. Singh, G. Verma, Kumar, Structural, magnetic and Mössbauer studies of Nd-doped Mg–Mn ferrite nanoparticles. J. Magn. Magn. Mater. 444, 77–86 (2017)

    Article  CAS  Google Scholar 

  15. M. Ishaque, M.A. Khan, I.A. Hasan, M. Khan, M.A. Iqbal, M.U. Islam, M.F. Warsid, Investigations on structural, electrical and dielectric properties of yttrium substituted Mg-ferrites. Cer. Int. 41(3), 428–4034 (2015)

    Article  Google Scholar 

  16. N. Lwin, M.N.A. Fauzi, S. Sreekantan, R. Othman, Physical and electromagnetic properties of nanosized Gd substituted Mg–Mn ferrites by solution combustion method. Phys B 461, 134–139 (2015)

    Article  CAS  Google Scholar 

  17. N. Lwin, M.N.A. Fauzi, S. Sreekantan, R. Othman, A.A. Thant, Effect of Fe deficiency on structural and magnetic properties in low temperature synthesized Mg–Mn ferrite. Int. J. Nano Sci. 10, 1257–1263 (2011)

    Article  CAS  Google Scholar 

  18. H.W. Wang, S.C. Kung, Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method. J. Magn. Magn. Mater. 270, 230–236 (2004)

    Article  CAS  Google Scholar 

  19. P.P. Hankare, V.T. Vader, N.M. Patil, S.D. Jadhav, U.B. Sankpal, M.R. Kadam, Synthesis, characterization and studies on magnetic and electrical properties of Mg ferrite with Cr substitution. Mater. Chem. Phys. 113, 233–238 (2009)

    Article  CAS  Google Scholar 

  20. V.M. Khot, A.B. Salunkhe, M.R. Phadatare, N.D. Thorat, S.H. Pawar, Low-temperature synthesis of MnxMg1−xFe2O4 (x = 0–1) nanoparticles: cation distribution, structural and magnetic properties. J. Phys. D Appl. Phys. 46, 055303 (2013)

    Article  Google Scholar 

  21. R. Jasrotia, P. Puri, V.P. Singh, R. Kumar, Sol–gel synthesized Mg–Ag–Mn nanoferrites for power applications. J. Sol–Gel Sci. Technol. 97, 205–212 (2020)

    Article  Google Scholar 

  22. K.C. Patil, M.S. Hegde, T. Rattan, S.T. Aruna, Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications (World Scientific Publishing Co. Pte. Ltd., Singapore, 2008).

    Book  Google Scholar 

  23. R.J. Carvajal, A. FullPROF, Rietveld Refinement and Pattern Matching Analysis Program Laboratories (Leon Brillouin, [CEA-CNRS], Gif Sur Yvette, 2000).

    Google Scholar 

  24. G. Kumar, R.K. Kotnala, J. Shah et al., Cation distribution: a key to ascertain the magnetic interactions in a cobalt substituted Mg–Mn nanoferrite matrix. J. Phys. Chem. Chem. Phys. 19(25), 16669–16680 (2017)

    Article  CAS  Google Scholar 

  25. M.F. Kuo, Y.H. Hung, J.Y. Huang et al., Substitution effects on magnetic properties of Mg1.3-xMnxAlyFe1.8-yO4 ferrites. J. API Adv. 7(5), 2158–3226 (2017)

    Google Scholar 

  26. S.M. Maryam, S. Ali, A. Ahmad et al., Enhanced dye sensitized solar cells efficiency by utilization of an external layer of CaCe2(MoO4)4:Er3+/Yb3+ nanoparticles. J. All. Compd. 769, 732–739 (2018)

    Article  Google Scholar 

  27. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. B 99, 1727 (1955)

    Article  CAS  Google Scholar 

  28. E. Petrova, D. Kotsikau, V. Pankov, A. Fahmi, Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn-ferrite nanopowders. J. Mag. Mag. Mat. 473, 85–91 (2019)

    Article  CAS  Google Scholar 

  29. C. Sudakar, G.N. Subbanna, T.R.N. Kutty, Synthesis of acicular hydrogoethite (α-FeOOH·xH2O; 0.1 < x < 0.22) particles using morphology controlling cationic additives and magnetic properties of maghemite derived from hydrogoethite. J. Mater. Chem. 12, 107 (2002)

    Article  CAS  Google Scholar 

  30. D. Gherca, A. Pui, V. Nica, O. Caltun, N. Cornei, Eco-environmental synthesis and characterization of nanophase powders of Co, Mg, Mn and Ni ferrites. Cer. Int. 40(7), 9599–9607 (2014)

    Article  CAS  Google Scholar 

  31. P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116, 207–213 (2009)

    Article  CAS  Google Scholar 

  32. V.J. Angadi, A.V. Anupama, R. Kumar, H.K. Choudhary, S. Matteppanavar, H.M. Somashekarappa, B. Rudraswamy, B. Sahoo, Composition dependent structural and morphological modifications in nanocrystalline Mn–Zn ferrites induced by high energy γ-irradiation. Mater. Chem. Phys. 199, 313–321 (2017)

    Article  CAS  Google Scholar 

  33. M. Dhiman, S. Rana, K. Batoo, J.K. Sharma, M. Singh, Synthesis and characterization of Y and Sm doped Mg nanoferrites. Integr. Ferroelectr. 184(1), 151–157 (2017)

    Article  CAS  Google Scholar 

  34. B. Kaur, M. Arora, A. Shankar, A.K. Srivastava, R.P. Pant, Induced size effects of Gd3+ ions doping on structural and magnetic properties of Ni–Zn ferrite nanoparticles. Adv. Mat. Lett. 3, 399–405 (2012)

    Article  Google Scholar 

  35. R.P. Pant, M. Arora, B. Kaur, V. Kumar, A. Kumar, Finite size effect on Gd3+ doped CoGdxFe2−xO4 (0.0<x<0.5) particles. J. Magn. Magn. Mater. 322, 3688–3691 (2010)

    Article  CAS  Google Scholar 

  36. S.A. Altshuler, B.M. Kozyrev, Electron Paramagnetic Resonance (Academic Press, London, 1964).

    Google Scholar 

  37. K.H. Wu, Y.C. Chang, H.B. Chen, C.C. Yang, D.N. Horng, Variable temperature electron paramagnetic resonance studies of the NiZn ferrite/SiO2 nanocomposite. J. Magn. Magn. Mater. 278, 156–163 (2004)

    Article  CAS  Google Scholar 

  38. K.H. Wu, W.C. Huang, G.P. Wang, T.R. Wu, Effect of pH on the magnetic and dielectric properties of SiO2/NiZn ferrite nanocomposites. Mater. Res. Bull. 40, 1822–1831 (2005)

    Article  CAS  Google Scholar 

  39. K.H. Wu, T.H. Ting, M.C. Li, W.D. Ho, Sol–gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. J. Magn. Magn. Mater. 298, 25–32 (2006)

    Article  CAS  Google Scholar 

  40. M. Khan, J. Duan, Y. Chen, H. Yao, S. Lyu, H. Shou, K. Heng, Q. Xu, Superparamagnetic nickel–substituted manganese ferrite (Mn0.8Ni0.2Fe2O4) nanoplates as anode materials for lithium-ion batteries. J. Alloys Compd. 701, 147–152 (2017)

    Article  CAS  Google Scholar 

  41. G. Kumar, J. Shah, R.K. Kotnala, V.P. Singh, Sarveena, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Superparamagnetic behaviour and evidence of weakening in super-exchange interactions with the substitution of Gd3+ ions in the Mg–Mn nanoferrite matrix. Mater. Res. Bull. 63, 216–225 (2015)

    Article  CAS  Google Scholar 

  42. X.B. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, W. Du, Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 396, 125205 (2020)

    Article  CAS  Google Scholar 

  43. C. Li, J. Sui, Z. Zhang, X. Jiang, Z. Zhang, L. Yu, Microwave-assisted synthesis of tremella-like NiCo/C composites for efficient broadband electromagnetic wave absorption at 2–40 GHz. Chem. Eng. J. 375, 122017 (2019)

    Article  CAS  Google Scholar 

  44. G. Kumar, R.K. Kotnala, J. Shah, V. Kumar, A. Kumar, P. Dhiman, M. Singh, Cation distribution: a key to ascertain the magnetic interactions in cobalt substituted Mg–Mn nanoferrite matrix. Phys. Chem. Chem. Phys. 19, 16669 (2017)

    Article  CAS  Google Scholar 

  45. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via Co-precipitation route. J. Alloy. Compd. 684, 569–581 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. Dhiman is thankful to Director, Sophisticated Analytical Instrumentation Facility (SAIF), Laboratory, Punjab University for providing material characterization facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Dhiman.

Ethics declarations

Conflict of interest

Authors hereby declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, M., Rana, S., Sanansha et al. Influence of Ho3+ substitution on structural and magnetic properties of Mg–Mn ferrites. J Mater Sci: Mater Electron 32, 8756–8766 (2021). https://doi.org/10.1007/s10854-021-05547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05547-9

Navigation