Skip to main content
Log in

Achieving C/CuO microfiber composites with efficient microwave absorbing performance at low thickness

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The carbon fibers with low density still face significant microwave absorbing application issues due to their high dielectric constant. Herein, C/Cu core–shell microfiber composites are prepared by electroless plating. The Cu coating of C/Cu core–shell microfiber composites is oxidized to CuO at 300 °C and 400 °C temperature. The morphology, microstructure, and electromagnetic characteristics of C/CuO microfiber composites were analyzed. The diameter of all the fiber composites was about 7–8 μm. The CuO coating thickness formed at 300 °C and 400 °C temperature is 30–90 nm and 300–900 nm, respectively. The annealing process tunes the electromagnetic characteristics and optimizes impedance matching. The minimum reflection loss (RL) value of C/CuO core–shell microfiber composites annealed at 300 °C temperature remarkably reaches − 46.0 dB at 1.06 mm thickness and 3.6 GHz effective absorption bandwidth (RL ≤ − 10 dB). The C/CuO microfiber composites can be the ideal absorbing materials at a lower thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Almasi-Kashi, S. Alikhanzadeh-Arani, M. Karamzadeh-Jahromi, The role of Sn, Zn, and Cu additions on the microwave absorption properties of Co-Ni alloy nanoparticles. Mater. Res. Bull. 118, 110491 (2019)

    Article  CAS  Google Scholar 

  2. Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6(8), 1801057 (2019)

    Article  CAS  Google Scholar 

  3. Y. Wang, Y. Sun, Y. Zong, T. Zhu, L. Zhang, X. Li, H. Xing, X. Zheng, Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance. J. Alloys Compd. 824, 153980 (2020)

    Article  CAS  Google Scholar 

  4. Y. Sun, J. Zhang, Y. Zong, X. Deng, H. Zhao, J. Feng, M. He, X. Li, Y. Peng, X. Zheng, Crystalline-AMORPHOUS Permalloy@Iron oxide core-shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents. ACS Appl. Mater. Interfaces 11(6), 6374–6383 (2019)

    Article  CAS  Google Scholar 

  5. F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111(6), 061301 (2012)

    Article  CAS  Google Scholar 

  6. W. Hong, P. Xiao, Z. Li, H. Luo, Microwave radial dielectric properties of carbon fiber bundle: modeling, validation and application. Carbon 79, 538–543 (2014)

    Article  CAS  Google Scholar 

  7. J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu, X. Shen, Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2(40), 16905–16914 (2014)

    Article  CAS  Google Scholar 

  8. S.-E. Lee, W.-J. Lee, K.-S. Oh, C.-G. Kim, Broadband all fiber-reinforced composite radar absorbing structure integrated by inductive frequency selective carbon fiber fabric and carbon-nanotube-loaded glass fabrics. Carbon 107, 564–572 (2016)

    Article  CAS  Google Scholar 

  9. G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012)

    Article  CAS  Google Scholar 

  10. G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116(16), 9196–9201 (2012)

    Article  CAS  Google Scholar 

  11. Y. Wan, T. Cui, J. Xiao, G. Xiong, R. Guo, H. Luo, Engineering carbon fibers with dual coatings of FeCo and CuO towards enhanced microwave absorption properties. J. Alloys Compd. 687, 334–341 (2016)

    Article  CAS  Google Scholar 

  12. C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, P. Xu, Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J. Alloys Compd. 506(1), 93–97 (2010)

    Article  CAS  Google Scholar 

  13. X. Meng, Y. Wan, Q. Li, J. Wang, H. Luo, The electrochemical preparation and microwave absorption properties of magnetic carbon fibers coated with Fe3O4 films. Appl. Surf. Sci. 257(24), 10808–10814 (2011)

    Article  CAS  Google Scholar 

  14. W. Ye, Q. Sun, G. Zhang, Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites. Ceram. Int. 45(4), 5093–5099 (2019)

    Article  CAS  Google Scholar 

  15. W. Li, H. Qi, F. Guo, X. Niu, Y. Du, Y. Chen, NiFe2O4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent. RSC Adv. 9(51), 29959–29966 (2019)

    Article  CAS  Google Scholar 

  16. L. Wang, F. He, Y. Wan, Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe–Co alloy by electroplating. J. Alloys Compd. 509(14), 4726–4730 (2011)

    Article  CAS  Google Scholar 

  17. Y. Liu, Z. Zhang, S. Xiao, C. Qiang, L. Tian, J. Xu, Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials. Appl. Surf. Sci. 257(17), 7678–7683 (2011)

    Article  CAS  Google Scholar 

  18. C.H. Xu, C.H. Woo, S.Q. Shi, Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399(1–3), 62–66 (2004)

    Article  CAS  Google Scholar 

  19. C.H. Xu, C.H. Woo, S.Q. Shi, The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct. 36(1–3), 31–38 (2004)

    Article  CAS  Google Scholar 

  20. X. Liu, C. Feng, S.W. Or, Y. Sun, C. Jin, W. Li, Y. Lv, Investigation on microwave absorption properties of CuO/Cu2O-coated Ni nanocapsules as wide-band microwave absorbers. RSC Adv. 3(34), 14590–14594 (2013)

    Article  CAS  Google Scholar 

  21. J. Zeng, J. Xu, Microwave absorption properties of CuO/Co/carbon fiber composites synthesized by thermal oxidation. J. Alloys Compd. 493(1–2), L39–L41 (2010)

    Article  CAS  Google Scholar 

  22. Z. Jun, F. Huiqing, W. Yangli, Z. Shiquan, X. Jun, C. Xinying, Ferromagnetic and microwave absorption properties of copper oxide/cobalt/carbon fiber multilayer film composites. Thin Solid Films 520(15), 5053–5059 (2012)

    Article  CAS  Google Scholar 

  23. A. Kumar, A.K. Srivastava, P. Tiwari, R.V. Nandedkar, The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys.: Condens. Matter. 16(47), 8531–8543 (2004)

    CAS  Google Scholar 

  24. M. Kaur, K.P. Muthe, S.K. Despande, S. Choudhury, J.B. Singh, N. Verma, S.K. Gupta, J.V. Yakhmi, Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth 289(2), 670–675 (2006)

    Article  CAS  Google Scholar 

  25. J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan, CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454(1–2), 268–273 (2008)

    Article  CAS  Google Scholar 

  26. M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang, L. Zhang, C. Gong, Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D 53(2), 02LT01 (2020)

    Article  CAS  Google Scholar 

  27. J. Wang, F. Wu, Z. Yang, T. Shah, A. Zhang, Q. Zhang, B. Zhang, Preparation of CTCNFs/Co9S8 hybrid nanofibers with enhanced microwave absorption performance. Nanotechnology 31(22), 225605 (2020)

    Article  CAS  Google Scholar 

  28. P. Xie, K. Sun, Z. Wang, Y. Liu, R. Fan, Z. Zhang, G. Schumacher, Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J. Alloys Compd. 725, 1259–1263 (2017)

    Article  CAS  Google Scholar 

  29. Y. Qiao, Z. Yao, X. Wang, X. Zhang, C. Bai, Q. Li, K. Chen, Z. Li, T. Zheng, Lattice composites with embedded short carbon fiber/Fe3O4/epoxy hollow spheres for structural performance and microwave absorption. Mater. Des. 188, 108427 (2020)

    Article  CAS  Google Scholar 

  30. X. Zuo, P. Xu, C. Zhang, M. Li, X. Jiang, X. Yue, Porous magnetic carbon nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave absorption synthesized by electrospinning. Ceram. Int. 45(4), 4474–4481 (2019)

    Article  CAS  Google Scholar 

  31. F. Wen, F. Zhang, Z. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115(29), 14025–14030 (2011)

    Article  CAS  Google Scholar 

  32. Y. Wei, H. Liu, S. Liu, M. Zhang, Y. Shi, J. Zhang, L. Zhang, C. Gong, Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 9, 70–75 (2018)

    Article  Google Scholar 

  33. Y. Shi, M. Zhang, X. Zhang, L. Zhang, Y. Zhang, Z. Jiang, H. Si, C. Gong, Achieving excellent metallic magnet-based absorbents by regulating the eddy current effect. J. Appl. Phys. 126(10), 105109 (2019)

    Article  CAS  Google Scholar 

  34. Y. Jiang, X. Fu, R. Tian, W. Zhang, H. Du, C. Fu, Z. Zhang, P. Xie, J. Xin, R. Fan, Nitrogen-doped carbon nanofibers with sulfur heteroatoms for improving microwave absorption. J. Mater. Sci. 55(14), 5832–5842 (2020)

    Article  CAS  Google Scholar 

  35. J. Zeng, J. Xu, P. Tao, W. Hua, Ferromagnetic and microwave absorption properties of copper oxide-carbon fiber composites. J. Alloys Compd. 487(1–2), 304–308 (2009)

    Article  CAS  Google Scholar 

  36. Y. Shen, Y. Wei, J. Ma, Y. Zhang, B. Ji, J. Tang, L. Zhang, P. Yan, X. Du, Self-cleaning functionalized FeNi/NiFe2O4/NiO/C nanofibers with enhanced microwave absorption performance. Ceram. Int. 46(9), 13397–13406 (2020)

    Article  CAS  Google Scholar 

  37. Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014)

    Article  CAS  Google Scholar 

  38. Y. Wei, Y. Shi, Z. Jiang, X. Zhang, H. Chen, Y. Zhang, J. Zhang, C. Gong, High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes. J. Alloys Compd. 810, 151950 (2019)

    Article  CAS  Google Scholar 

  39. X. Zhao, S. Dong, C. Hong, X. Zhang, J. Han, Precursor infiltration and pyrolysis cycle-dependent microwave absorption and mechanical properties of lightweight and antioxidant carbon fiber felts reinforced silicon oxycarbide composites. J. Colloid Interface Sci. 568, 106–116 (2020)

    Article  CAS  Google Scholar 

  40. X.A. Fan, J. Guan, W. Wang, G. Tong, Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D 42(7), 075006 (2009)

    Article  CAS  Google Scholar 

  41. X. Xu, S. Shi, G. Wan, C. Hao, Z. He, G. Wang, Uniformly coating MnOx nanoflakes onto carbon nanofibers as lightweight and wideband microwave absorbers with frequency-selective absorption. Mater. Des. 183, 108167 (2019)

    Article  CAS  Google Scholar 

  42. J. Zhu, S. Wei, N. Haldolaarachchige, D.P. Young, Z. Guo, Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell fe–silica nanoparticles. J. Phys. Chem. C 115(31), 15304–15310 (2011)

    Article  CAS  Google Scholar 

  43. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017)

    Article  CAS  Google Scholar 

  44. D.-F. Zhang, Z.-F. Hao, B. Zeng, Y.-N. Qian, Y.-X. Huang, Z.-D. Yang, Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules. Chin. Phys. B 25(4), 040201 (2016)

    Article  CAS  Google Scholar 

  45. G. He, Y. Duan, L. Song, X. Zhang, Doping strategy to boost electromagnetic property and gigahertz tunable electromagnetic attenuation of hetero-structured manganese dioxide. Dalton Trans. 48(7), 2407–2421 (2019)

    Article  CAS  Google Scholar 

  46. Y. Hu, R. Jiang, J. Zhang, C. Zhang, G. Cui, Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles. J. Mater. Sci. Technol. 34(5), 886–890 (2018)

    Article  Google Scholar 

  47. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9(19), 16404–16416 (2017)

    Article  CAS  Google Scholar 

  48. Y. Shen, Y. Wei, J. Li, Q. Li, J. Ma, P. Wang, B. Li, W. He, X. Du, Preparation of microwave absorbing Co-C nanofibers with robust superhydrophobic properties by electrospinning. J. Mater. Sci.: Mater. Electron. 30(4), 3365–3377 (2019)

    CAS  Google Scholar 

  49. B. Quan, X. Liang, X. Zhang, G. Xu, G. Ji, Y. Du, Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 10(48), 41535–41543 (2018)

    Article  CAS  Google Scholar 

  50. H. Salimkhani, F. Movassagh-Alanagh, H. Aghajani, K. Osouli-Bostanabad, Study on the magnetic and microwave properties of electrophoretically deposited nano-Fe3O4 on carbon fiber. Procedia Mater. Sci. 11, 231–237 (2015)

    Article  CAS  Google Scholar 

  51. Y. Wei, J. Yue, X.-Z. Tang, Z. Du, X. Huang, Enhanced magnetic and microwave absorption properties of FeCo-SiO2 nanogranular film functionalized carbon fibers fabricated with the radio frequency magnetron method. Appl. Surf. Sci. 428, 296–303 (2018)

    Article  CAS  Google Scholar 

  52. B. Huang, J. Yue, Y. Wei, X. Huang, X. Tang, Z. Du, Enhanced microwave absorption properties of carbon nanofibers functionalized by FeCo coatings. Appl. Surf. Sci. 483, 98–105 (2019)

    Article  CAS  Google Scholar 

  53. W. Li, H. Qi, F. Guo, Y. Du, N. Song, Y. Liu, Y. Chen, Co nanoparticles supported on cotton-based carbon fibers: a novel broadband microwave absorbent. J. Alloys Compd. 772, 760–769 (2019)

    Article  CAS  Google Scholar 

  54. A. Slosarczyk, L. Klapiszewski, T. Buchwald, P. Krawczyk, L. Kolanowski, G. Lota, Carbon fiber and nickel coated carbon fiber-silica aerogel nanocomposite as low-frequency microwave absorbing materials. Materials 13(2), 400 (2020)

    Article  CAS  Google Scholar 

  55. W. Chen, K. Peng, J. Wang, X. He, Y. Su, B. Zhang, X. Su, Enhanced microwave absorption properties of nickel-coated carbon fiber/glass fiber hybrid epoxy composites-towards an industrial reality. Mater. Res. Express 6(12), 126324 (2020)

    Article  CAS  Google Scholar 

  56. S. Zeng, W. Feng, S. Peng, Z. Teng, C. Chen, H. Zhang, S. Peng, Dual-functional SiOC ceramics coating modified carbon fibers with enhanced microwave absorption performance. RSC Adv. 9(53), 30685–30692 (2019)

    Article  CAS  Google Scholar 

  57. Y. Wang, Z. Wen, L. Long, Y. Li, W. Zhou, Dielectric response and microwave absorption properties of SiC whisker-coated carbon fibers. J. Mater. Sci.: Mater. Electron. 30(16), 15075–15083 (2019)

    CAS  Google Scholar 

  58. S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen, Y. Li, J. Zhang, Y. Song, Y. Qin, Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 11(1), 530–541 (2017)

    Article  CAS  Google Scholar 

  59. T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25(47), 6905–6910 (2013)

    Article  CAS  Google Scholar 

  60. H. Pan, X. Yin, J. Xue, L. Cheng, L. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51771085, 51571104, 51801087 and 51801088), the Fundamental Research Funds for the Central Universities (lzujbky-2019-88), Open Project for Sharing Advanced Scientific Instruments of Lanzhou University (LZU-GXJJ-2019C019), and Open Project of Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University (LZUMMM2019008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhu, J., Xie, Y. et al. Achieving C/CuO microfiber composites with efficient microwave absorbing performance at low thickness. J Mater Sci: Mater Electron 32, 25973–25986 (2021). https://doi.org/10.1007/s10854-021-05517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05517-1

Navigation