Skip to main content

Advertisement

Log in

Structural evolution, dielectric relaxation and modulus spectroscopic studies in Dy substituted NBT-BT ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the effect of partial substitution of Dy3+ rare earth ion in NBT-BT lead free ceramics on its structural, microstructural, ferroelectric and dielectric phase transitions. The Rietveld refined X-ray diffraction analysis revealed a coexistence of dual phase with major monoclinic (Cc) along with minor tetragonal (P4mm) in all Dy-NBT-BT ceramics. The T-dependent dielectric broad band spectroscopic study revealed that Dy-substituted NBT-BT ceramics exhibits two diffuse dielectric anomalies renowned as Ferro (FE) to anti Ferro (AFE) i.e., depolarization phase transition (\(T_{d}\)) and Antiferro (AFE) to paraelectric (PE) i.e., curie phase transition (\(T_{C}\)), below 150 °C and well above 300 °C temperature regions respectively. The complex frequency dependent dielectric and modulus spectroscopy analysis supports the Non-Debye type dielectric relaxation process was dominated for all the measured ceramics. T-dependent AC-conductivity study revealed, thermally activated charge carries and single ionized oxygen vacancies are found to contribute conduction process at different temperature regions. Room temperature polarization hysteresis (PE) loops analysis exposed a slim asymmetric shape with Dy substitution increasing that indicates conversion of hard to soft ferroelectric character. Remnant polarisation (\(P_{r}\)) and coercive field (\(E_{c}\)) decreases with dopant concentration shows the tetragonality dominance with Dy substitution. Furthermore, an optimum recoverable energy density 1.477 J/cm3 was obtained in NBT-BT at Dy = 0.03 compositions that designate the materials could be useful for future high energy storage density applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.A. Smolenskii, A.I. Agranovskaya, Dielectric polarization of a number of complex compounds. Sov Phys. Solid State 1, 1429–1437 (1960)

    Google Scholar 

  2. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990)

    Article  CAS  Google Scholar 

  3. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)

    Article  CAS  Google Scholar 

  4. E. Aksel, J.S. Forrester, J.L. Jones et al., Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3. Appl. Phys. Lett. 98, 152901 (2011)

    Article  Google Scholar 

  5. E. Aksel, J.S. Forrester, B. Kowalski et al., Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3664393

    Article  Google Scholar 

  6. B. Noheda, D.E. Cox, G. Shirane et al., A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl. Phys. Lett. 74, 2059–2061 (1999)

    Article  CAS  Google Scholar 

  7. B. Noheda, D.E. Cox, G. Shirane et al., Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3. Phys. Rev. Lett. 86, 3891 (2001)

    Article  CAS  Google Scholar 

  8. B. Noheda, D.E. Cox, G. Shirane et al., Phase diagram of the ferroelectric relaxor (1–x) PbMg1/3Nb2/3O3−xPbTiO3. Phys. Rev. B 66, 54104 (2002)

    Article  Google Scholar 

  9. F. Bai, N. Wang, J. Li et al., X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1/3Nb2/3)-0.3PbTiO3 crystal. J. Appl. Phys. 96, 1620–1627 (2004)

    Article  CAS  Google Scholar 

  10. B.N. Rao, R. Ranjan, Electric-field-driven monoclinic-to-rhombohedral transformation in Na1/2Bi1/2TiO3. Phys. Rev. B 86, 134103 (2012)

    Article  Google Scholar 

  11. K. Thangavelu, S. Asthana, Monoclinic Cc-phase stabilization in magnetically diluted lead free Na1/2Bi1/2TiO3: evolution of spin glass like behavior with enhanced ferroelectric and dielectric properties. Mater. Res. Express 2, 96301 (2015)

    Article  Google Scholar 

  12. G.A. Smolensky, New ferroelectrics of complex composition. IV. Sov Phys. Solid State 2, 2651–2654 (1961)

    Google Scholar 

  13. C.F. Buhrer, Some properties of bismuth perovskites. J. Chem. Phys. 36, 798–803 (1962)

    Article  CAS  Google Scholar 

  14. J. Suchanicz, K. Roleder, A. Kania, J. Hańaderek, Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0.5Bi0.5TiO3. Ferroelectrics 77, 107–110 (1988)

    Article  CAS  Google Scholar 

  15. K. Roleder, J. Suchanicz, A. Kania, Time dependence of electric permittivity in Na0.5Bi0.5TiO3 single crystals. Ferroelectrics 89, 1–5 (1989)

    Article  CAS  Google Scholar 

  16. K. Sakata, Y. Masuda, Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics 7, 347–349 (1974)

    Article  CAS  Google Scholar 

  17. D. Lin, K.W. Kwok, Dielectric and piezoelectric properties of (Bi1−x−yNdxNa1−y)0.5BayTiO3 lead-free ceramics. Curr. Appl. Phys. 10, 422–427 (2010)

    Article  Google Scholar 

  18. Y. Li, W. Chen, Q. Xu et al., Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3– K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics. Mater. Lett. 59, 1361–1364 (2005)

    Article  CAS  Google Scholar 

  19. C. Peng, J.-F. Li, W. Gong, Preparation and properties of (Bi1/2Na1/2)TiO3–Ba(Ti, Zr)O3 lead-free piezoelectric ceramics. Mater. Lett. 59, 1576–1580 (2005)

    Article  CAS  Google Scholar 

  20. Z. Chen, J. Hu, Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94 Ba0.06TiO3–Ba(Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int. 35, 111–115 (2009)

    Article  CAS  Google Scholar 

  21. C. Zhou, X. Liu, W. Li, C. Yuan, Microstructure and electrical properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–LiNbO3 lead-free piezoelectric ceramics. J. Phys. Chem. Solids 70, 541–545 (2009)

    Article  CAS  Google Scholar 

  22. D.Z. Zhang, X.J. Zheng, X. Feng et al., Ferro-piezoelectric properties of 0.94(Na0.5Bi0.5)TiO3–0.06BaTiO3 thin film prepared by metal–organic decomposition. J. Alloys Compd. 504, 129–133 (2010)

    Article  CAS  Google Scholar 

  23. C. Ma, X. Tan, Phase diagram of unpoled lead-free (1–x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics. Solid State Commun. 150, 1497–1500 (2010)

    Article  CAS  Google Scholar 

  24. Z. Yang, B. Liu, L. Wei, Y. Hou, Structure and electrical properties of (1–x) Bi0.5Na0.5TiO3–x Bi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81–89 (2008)

    Article  CAS  Google Scholar 

  25. W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, Crystal Structure, dielectric and ferroelectric properties of (Bi0.5Na0.5)TiO3–(Ba, Sr)TiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 492, 307–312 (2010)

    Article  CAS  Google Scholar 

  26. M. Zou, H. Fan, L. Chen, W. Yang, Microstructure and electrical properties of (1–x)[0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3]–xBiFeO3 lead-free piezoelectric ceramics. J. Alloys Compd. 495, 280–283 (2010)

    Article  CAS  Google Scholar 

  27. T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  CAS  Google Scholar 

  28. M. Chen, Q. Xu, B.H. Kim et al., Structure and electrical properties of (Na0.5Bi0.5)1−xBaxTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 843–849 (2008)

    Article  Google Scholar 

  29. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 ceramics. J. Eur. Ceram. Soc. (2002). https://doi.org/10.1016/S0955-2219(02)00027-4

    Article  Google Scholar 

  30. H. Du, W. Zhou, F. Luo et al., An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl. Phys. Lett. 91, 202907 (2007)

    Article  Google Scholar 

  31. D. Lin, K.W. Kwok, H.W.L. Chan, Dielectric and piezoelectric properties of (K0.5Na0.5)NbO3–Ba(Zr0.05Ti0.95)O3 lead-free ceramics. Appl. Phys. Lett. 91, 143513 (2007)

    Article  Google Scholar 

  32. G. Fan, W. Lu, X. Wang, F. Liang, Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–KNbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 91, 202908 (2007)

    Article  Google Scholar 

  33. B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Phase transition and electrical properties of lanthanum-modified sodium bismuth titanate. Mater. Chem. Phys. 132, 1007–1014 (2012)

    Article  CAS  Google Scholar 

  34. M. Raghavender, G.S. Kumar, G. Prasad, A-site substitution-controlled dielectric dispersion in lead-free sodium bismuth titanate. Pramana 72, 999–1009 (2009)

    Article  CAS  Google Scholar 

  35. M. Zannen, A. Lahmar, M. Dietze et al., Structural, optical, and electrical properties of Nd-doped Na0.5Bi0.5TiO3. Mater. Chem. Phys. 134, 829–833 (2012)

    Article  CAS  Google Scholar 

  36. M. Zannen, H. Khemakhem, A. Kabadou, M. Es-Souni, Structural, Raman and electrical studies of 2 at.% Dy-doped NBT. J. Alloys Compd. 555, 56–61 (2013)

    Article  CAS  Google Scholar 

  37. A.M. Gonzalez, L. Pardo, M.E. Montero-Cabrera, L.E. Fuentes-Cobas, Analysis of the rhombohedral–tetragonal symmetries coexistence in lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 ceramics from nanopowders. Adv. Appl. Ceram. 115, 96–105 (2016)

    Article  CAS  Google Scholar 

  38. F. Qiang, J.-H. He, J. Zhu, X.-B. Chen, Ferroelectric and dielectric properties of bismuth-layered structural Sr2Bi4−xLnxTi5O18 (Ln= La, Nd, Sm and Dy) ceramics. J. Solid State Chem. 179, 1768–1774 (2006)

    Article  Google Scholar 

  39. Y. Noguchi, M. Miyayama, T. Kudo, Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties. Phys. Rev. B 63, 214102 (2001)

    Article  Google Scholar 

  40. Y. Noguchi, M. Miyayama, T. Kudo, Effect of Bi substitution at the Sr site on the ferroelectric properties of dense strontium bismuth tantalate ceramics. J. Appl. Phys. 88, 2146–2148 (2000)

    Article  CAS  Google Scholar 

  41. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  42. J.R. Macdonald, Impedance spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992)

    Article  CAS  Google Scholar 

  43. V.F. Lvovich, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena (Wiley, Hoboken, 2012).

    Book  Google Scholar 

  44. K.W. Wagner, The theory of incomplete dielectricity. Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  45. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  46. K. Datta, P.A. Thomas, K. Roleder, Anomalous phase transitions of lead-free piezoelectric x Na0.5Bi0.5TiO3−(1–x) BaTiO3 solid solutions with enhanced phase transition temperatures. Phys. Rev. B 82, 224105 (2010)

    Article  Google Scholar 

  47. L. Chauhan, A.K. Shukla, K. Sreenivas, Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceram. Int. 41, 8341–8351 (2015)

    Article  CAS  Google Scholar 

  48. K. Chen, J. Hyodo, N. Ai, T. Ishihara, Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions. Int. J. Hydrogen Energy 41, 1419–1431 (2016)

    Article  CAS  Google Scholar 

  49. R. Waser, T. Baiatu, K. Härdtl, dc electrical degradation of perovskite-type titanates: I, ceramics. J. Am. Ceram. Soc. 73, 1645–1653 (1990)

    Article  CAS  Google Scholar 

  50. T.-F. Zhang, X.-G. Tang, Q.-X. Liu et al., Oxygen-vacancy-related relaxation and conduction behavior in (Pb1–x Bax)(Zr0.95Ti0.05)O3 ceramics. AIP Adv. 4, 107141 (2014)

    Article  Google Scholar 

  51. A. Dutta, T.P. Sinha, Dielectric relaxation in perovskite BaAl1/2Nb1/2O3. J. Phys. Chem. Solids 67, 1484–1491 (2006)

    Article  CAS  Google Scholar 

  52. M.M. Costa, G.F.M. Pires Jr., A.J. Terezo et al., Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J. Appl. Phys. 110, 34107 (2011)

    Article  Google Scholar 

  53. P. Tirupathi, A. Chandra, Grain and grain boundary effects in Ca2+ doped BiFeO3 multiferroic ceramics. Phys. Status Solidi 249, 1639–1645 (2012)

    Article  CAS  Google Scholar 

  54. J.R. Macdonald, Comments on the electric modulus formalism model and superior alternatives to it for the analysis of the frequency response of ionic conductors. J. Phys. Chem. Solids 70, 546–554 (2009)

    Article  CAS  Google Scholar 

  55. T. Patri, P. Justin, P.D. Babu, A. Ghosh, Analysis of dielectric and magnetic phase transitions in Yb(Fe0.5Cr0.5)O3 bulk perovskite. Appl. Phys. A 125, 224 (2019)

    Article  Google Scholar 

  56. M.S. Cao, X.X. Wang, M. Zhang et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1–54 (2019). https://doi.org/10.1002/adfm.201807398

    Article  CAS  Google Scholar 

  57. O. Bidault, P. Goux, M. Kchikech et al., Space-charge relaxation in perovskites. Phys. Rev. B 49, 7868 (1994)

    Article  CAS  Google Scholar 

  58. M. Li, H. Zhang, S.N. Cook et al., Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem. Mater. 27, 629–634 (2015)

    Article  CAS  Google Scholar 

  59. Y. Sun, H. Liu, H. Hao, S. Zhang, Effect of oxygen vacancy on electrical property of acceptor doped BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 X8R systems. J. Am. Ceram. Soc. 99, 3067–3073 (2016)

    Article  CAS  Google Scholar 

  60. T. Yan, X. Sun, J. Deng et al., Dielectric and conductivity behavior of Mn-doped K0.5Na0.5NbO3 single crystal. Solid State Commun. 264, 1–5 (2017)

    Article  CAS  Google Scholar 

  61. J. Shieh, K.C. Wu, C.S. Chen, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics. Acta Mater. 55, 3081–3087 (2007)

    Article  CAS  Google Scholar 

  62. Q. Zhao, T. Sheng, L. Pang et al., Highly efficient and giant negative electrocaloric effect of a Nb and Sn co-doped lead zirconate titanate antiferroelectric film near room temperature. RSC Adv. 9, 34114–34119 (2019). https://doi.org/10.1039/c9ra06551b

    Article  CAS  Google Scholar 

  63. F. Li, R. Zuo, D. Zheng, L. Li, Phase-composition-dependent piezoelectric and electromechanical strain properties in (Bi1/2Na1/2)TiO3–Ba(Ni1/1/2)O3 lead-free ceramics. J. Am. Ceram. Soc. 98, 811–818 (2015)

    Article  CAS  Google Scholar 

  64. A. Chauhan, S. Patel, R. Vaish, Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors. AIP Adv. 4, 87106 (2014)

    Article  Google Scholar 

  65. D. Wang, Z. Fan, D. Zhou et al., Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6, 4133–4144 (2018). https://doi.org/10.1039/c7ta09857j

    Article  CAS  Google Scholar 

  66. W.P. Cao, W.L. Li, X.F. Dai et al., Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016)

    Article  CAS  Google Scholar 

  67. W. Cao, W. Li, T. Zhang et al., High-energy storage density and efficiency of (1–x)[0.94 NBT–0.06 BT]–xST lead-free ceramics. Energy Technol. 3, 1198–1204 (2015)

    Article  CAS  Google Scholar 

  68. K.C. Sekhar, K.R. Kandula, K.S. Babu et al., Co-substitution of Er/Yb on structural and electrical properties of NKBT–BCZT solid solutions. SN Appl. Sci. 1, 1643 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author KCS would like to acknowledge to Dr. V. Seshubai, UGC Networking resource Centre (UGC-NRC), School of Physics, University of Hyderabad for providing X-ray diffraction studies and Dr. A. M. Awasthi and Suresh Bharadwaj, UGC-DAE-CSR, Indore Centre for providing high temperature dielectric measurements. The author TP would like to thank UGC-DAE, BARC-India, for (UDCSR/MUM/CD/CRSM-261/2017) the project funded under the collaborator research scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patri Tirupathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (TIF 693 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra Sekhar, K.S.K.R., Mahesh, M.L.V., Sreenivasu, T. et al. Structural evolution, dielectric relaxation and modulus spectroscopic studies in Dy substituted NBT-BT ferroelectric ceramics. J Mater Sci: Mater Electron 32, 8628–8647 (2021). https://doi.org/10.1007/s10854-021-05506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05506-4

Navigation