Skip to main content
Log in

Improved lithium storage performance of urchin-like CuO microspheres by stereotaxically constructed graphene mediating synergistic effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Urchin-like CuO/stereotaxically constructed graphene (SCG) microspheres are synthesized by one-step hydrothermal method. The size of the obtained urchin-like CuO/SCG microspheres is around 7 µm, which are composed of numerous end-connected nanorods with a diameter of about 80 nm. The existence of SCG inhibits the growth of CuO crystallite and CuO/SCG microspheres compared with the bare CuO microspheres. When directly used as anode materials for LIBs, the bare CuO and CuO/SCG microspheres deliver discharge specific capacities of 486.5 and 770.7 mA h g−1 at 0.1 A g−1 in the 80th cycle, respectively. Even if the current density is as high as 3 A g−1, CuO/SCG microsphere can still deliver a specific discharge capacity of 308.8 mA h g−1. Electrochemical performances of CuO/SCG microsphere are significantly higher than those of the bare CuO, which is attributed that SCG with 3D conductive network can enhance electronic conductivity and buffer volume variation of active material CuO during charge/discharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Zhang, G.H. Zhang, Z.Q. Li, K. Qu, L. Wang, W. Zeng, Q.F. Zhang, H.G. Duan, J. Mater. Chem. A 4, 10585–10592 (2016)

    Article  CAS  Google Scholar 

  2. X.D. Ma, K.X. Fang, X.Y. Yang, J.Y. Jiang, L.K. Meng, X.H. Wu, J. Alloys Compd. 818, 152859 (2020)

    Article  CAS  Google Scholar 

  3. J.Y. Xia, W.W. Wu, K.X. Fang, X.H. Wu, Carbon 157, 693–702 (2020)

    Article  CAS  Google Scholar 

  4. X.D. Ma, J.Y. Xia, X.H. Wu, Z.Y. Pan, P.K. Shen, Carbon 146, 78–87 (2019)

    Article  CAS  Google Scholar 

  5. X.D. Ma, Z.Y. Pan, X.H. Wu, P.K. Shen, Chem. Eng. J. 365, 132–141 (2019)

    Article  CAS  Google Scholar 

  6. H.J. Chen, Y. Wang, X.D. Ma, C. Fan, P.K. Shen, S.W. Ta, H.B. Wu, Z.S. Feng, J. Mater. Sci. 55, 17081–17093 (2020)

    Article  CAS  Google Scholar 

  7. W.H. Zuo, F.C. Ren, Q.H. Li, X.H. Wu, F. Fang, X.Q. Yu, H. Li, Y. Yang, Nano Energy 78, 105285 (2020)

    Article  CAS  Google Scholar 

  8. H. Yang, H.L. Zhu, Y.X. Qi, N. Lun, Y.J. Bai, J. Mater. Sci. 55, 15538–15550 (2020)

    Article  CAS  Google Scholar 

  9. J.Y. Xia, F.P. Zhang, J.L. Liang, K.X. Fang, W.W. Wu, X.H. Wu, J. Alloys Compd. 853, 157371 (2021)

    Article  CAS  Google Scholar 

  10. X.H. Wu, W. Chen, J. Key, W.W. Wu, Powder Technol. 323, 424–432 (2018)

    Article  CAS  Google Scholar 

  11. X. Li, J. Liu, Y. Zhang, Y. Li, H. Liu, X. Meng, Y. Yang, D. Geng, D. Wang, R. Li, X. Sun, J. Power Sources 197, 238–245 (2012)

    Article  CAS  Google Scholar 

  12. F. Wang, R. Song, H. Song, X. Chen, J. Zhou, Z. Ma, M. Li, Q. Lei, Carbon 81, 314–321 (2015)

    Article  CAS  Google Scholar 

  13. B.Z. Wu, X.Z. Jia, Y.L. Wang, J.X. Hu, E.L. Gao, Z. Liu, J. Mater. Chem A 7, 17357 (2019)

    Article  CAS  Google Scholar 

  14. C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 25, 4932–4937 (2013)

    Article  CAS  Google Scholar 

  15. R. Amine, A. Daali, X.W. Zhou, X. Liu, Y.Z. Liu, Y. Ren, X.Y. Zhang, L.K. Zhu, S. Al-Hallaj, Z.H. Chen, G.L. Xu, K. Amine, Nano Energy 74, 104849 (2020)

    Article  CAS  Google Scholar 

  16. Q.G. Han, Z. Yi, Y. Cheng, Y.M. Wu, L.M. Wang, RSC Adv. 6, 15279–15285 (2016)

    Article  CAS  Google Scholar 

  17. J.T. Vaughey, L. Fransson, H.A. Swinger, K. Edström, M.M. Thackeray, J. Power Sources 119–121, 64–68 (2003)

    Article  Google Scholar 

  18. E. Quiroga-González, J. Carstensen, H. Föll, Electrochim. Acta 101, 93–98 (2013)

    Article  Google Scholar 

  19. S.Q. Zhang, R. Lin, W.B. Yue, F.Z. Niu, J. Ma, X.J. Yang, Chem. Eng. J. 314, 19–26 (2017)

    Article  CAS  Google Scholar 

  20. J. Bai, X. Chen, E. Olsson, H.M. Wu, S.Q. Wang, Q. Cai, C.Q. Feng, J. Mater. Sci. Technol. 50, 92–102 (2020)

    Article  Google Scholar 

  21. Y. Lou, M. Zhang, C.G. Li, C.L. Chen, C. Liang, Z. Shi, D. Zhang, G. Chen, X.B. Chen, S.H. Feng, A.C.S. Appl, Mater. Interfaces 10, 1810–1818 (2018)

    Article  CAS  Google Scholar 

  22. J. Wang, H.Y. Yao, C.Y. Du, S.W. Guan, J. Power Sources 482, 228931 (2021)

    Article  CAS  Google Scholar 

  23. S.Y. Ren, L.K. Meng, C.H. Ma, Y. Yu, Y. Lou, D. Zhang, Y. Han, Z. Shi, S.H. Feng, Chem. Eng. J. 405, 126621 (2021)

    Article  CAS  Google Scholar 

  24. M.L. Jiao, Y.F. Wang, C.L. Ye, C.Y. Wang, W.K. Zhang, C. Liang, J. Alloys Compd. 842, 155774 (2020)

    Article  CAS  Google Scholar 

  25. A.B. Deshmukh, P.K. Dwivedi, A.C. Nalawade, M.S. Qureshi, W.V. Shelke, J. Mater. Sci. 55, 15667–15680 (2020)

    Article  CAS  Google Scholar 

  26. F.C. Zheng, Z.C. Yin, H.Y. Xia, Y.G. Zhang, Mater. Lett. 197, 188–191 (2017)

    Article  Google Scholar 

  27. X.J. Ruan, Y.X. Yang, K.C. Pu, M.X. Gao, Y.F. Liu, H.G. Pan, J. Power Sources 397, 134–142 (2018)

    Article  CAS  Google Scholar 

  28. Y. Su, T. Liu, P. Zhang, P. Zheng, Thin Solid Films 690, 137522 (2019)

    Article  CAS  Google Scholar 

  29. P. Subalakshmi, A. Sivashanmugam, J. Alloys Compd. 690, 523–531 (2017)

    Article  CAS  Google Scholar 

  30. X.Y. Zhou, J. Zhang, Q.M. Su, J.J. Shi, Y. Liu, G.H. Du, Electrochim. Acta 125, 615–621 (2014)

    Article  CAS  Google Scholar 

  31. Y.K. Kim, S.I. Cha, J.H. Lee, S.H. Hong, J. Nanosci. Nanotechno. 14, 9143–9147 (2014)

    Article  CAS  Google Scholar 

  32. L.Q. Lu, Y. Wang, Electrochem. Commun. 14, 82–85 (2012)

    Article  CAS  Google Scholar 

  33. X. Liu, H.G. Xiong, Y.F. Yang, J.F. Dong, X.F. Li, ACS Omega 3, 13146–13153 (2018)

    Article  CAS  Google Scholar 

  34. Y. Li, Z. Li, P.K. Shen, Adv. Mater. 25, 2474–2480 (2013)

    Article  CAS  Google Scholar 

  35. J.L. Liang, Y.F. Huang, Y.Z. Huang, M. Xu, J.W. Lei, H. Tao, X.H. Wu, W.W. Wu, Powder Technol. 380, 115–125 (2021)

    Article  CAS  Google Scholar 

  36. W. Chen, Y. Ning, Q.Z. Li, K.T. Li, X.H. Wu, W.W. Wu, H.X. Zhang, Mater. Lett. 236, 618–621 (2019)

    Article  CAS  Google Scholar 

  37. Z.J. Li, J.Q. Wang, N.N. Wang, S.N. Yan, W. Liu, Y.Q. Fu, Z.G. Wang, J. Alloys Compd. 725, 1136–1143 (2017)

    Article  CAS  Google Scholar 

  38. X. Zhang, K.H. Chen, Z.H. Zhou, L.N. He, Chem. Cat. Chem. 12, 4825–4830 (2020)

    CAS  Google Scholar 

  39. M.S. Nejad, S. Behzadi, H. Sheibani, Appl. Organometal. Chem. 33, 5166 (2019)

    Google Scholar 

  40. C.B. Liu, S.H. Qiu, P. Du, H.C. Zhao, L.P. Wang, Nanoscale 10, 8115–8124 (2018)

    Article  CAS  Google Scholar 

  41. K.Y. Hwa, P. Karuppaiah, N.S.K. Gowthaman, V. Balakumar, S. Shankar, H.N. Lim, Ultrason.-Sonochem. 58, 104649 (2019)

    Article  Google Scholar 

  42. N. Zare, A. Zabardasti, Appl. Organometal. Chem. 33, 4687 (2019)

    Article  Google Scholar 

  43. X.H. Wu, W.W. Wu, K.T. Wang, W. Chen, D. He, Mater. Lett. 147, 85–87 (2015)

    Article  CAS  Google Scholar 

  44. Y.F. Huang, Y.Z. Huang, K.T. Li, W. Chen, X.H. Wu, W.W. Wu, L.L. Huang, Q. Zhao, J. Electron. Mater. 49, 5508–5522 (2020)

    Article  CAS  Google Scholar 

  45. J.L. Liang, Y. Ning, X.H. Wu, W. Chen, W.W. Wu, K.T. Wang, Mater. Lett. 263, 127231 (2020)

    Article  CAS  Google Scholar 

  46. C.C. Kong, W.J. Lu, J.G. Zong, F.Z. Pu, X.X. Hu, X.J. Zhang, Z.M. Yang, F. Wang, H. Jin, J. Alloys Compd. 849, 156635 (2020)

    Article  CAS  Google Scholar 

  47. V. Senthilkumar, Y.S. Kim, S. Chandrasekaran, B. Rajagopalan, E.J. Kim, J.S. Chung, RSC Adv. 5, 20545 (2015)

    Article  CAS  Google Scholar 

  48. X.D. Liu, G.Y. Liu, L.J. Wang, Y.P. Li, Y.P. Ma, J.M. Ma, J. Power Sources 312, 199–206 (2016)

    Article  CAS  Google Scholar 

  49. Y. Liu, W. Wang, L. Gu, Y.W. Wang, Y.L. Ying, Y.Y. Mao, L.W. Sun, X.S. Peng, A.C.S. Appl, Mater. Interfaces 5, 9850–9855 (2013)

    Article  CAS  Google Scholar 

  50. H.S.H. Mohamed, L. Wu, C.F. Li, Z.Y. Hu, J. Liu, Z. Deng, L.H. Chen, Y. Li, B.L. Su, A.C.S. Appl, Mater. Interfaces 11, 32957–32968 (2019)

    Article  CAS  Google Scholar 

  51. F.Z. Pu, C.C. Kong, J. Lv, B. Ma, W.Q. Zhang, X.J. Zhang, S. Yang, H. Jin, Z.M. Yang, J. Alloys Compd. 805, 355–362 (2019)

    Article  CAS  Google Scholar 

  52. Y. Dong, X.Y. Jiang, J.H. Mo, Y.Z. Zhou, J.P. Zhou, Chem. Eng. J. 381, 122614 (2020)

    Article  CAS  Google Scholar 

  53. H.J. Chen, X.D. Ma, P.K. Shen, Chem. Eng. J. 364, 167–176 (2019)

    Article  CAS  Google Scholar 

  54. S.N. Xiao, D.L. Pan, L.J. Wang, Z.Z. Zhang, Z.Y. Lyu, W.H. Dong, X.L. Chen, D.Q. Zhang, W. Chen, H.X. Li, Nanoscale 8, 19343–19351 (2016)

    Article  CAS  Google Scholar 

  55. Q.Q. Ren, F.D. Yu, L.L. Zheng, B.S. Yin, Z.B. Wang, K. Ke, Ceram. Int. 45, 7552–7559 (2019)

    Article  CAS  Google Scholar 

  56. H.J. Liu, S.H. Bo, W.J. Cui, F. Li, C.X. Wang, Y.Y. Xia, Electrochim. Acta 53, 6497–6503 (2008)

    Article  CAS  Google Scholar 

  57. C.Y. Ding, W.W. Zhou, X.Y. Wang, B. Shi, D. Wang, P.Y. Zhou, Chem. Eng. J. 332, 479–485 (2018)

    Article  CAS  Google Scholar 

  58. D.F. Qiu, G. Bu, B. Zhao, Z.X. Lin, L. Pu, L.J. Pan, Y. Shi, Mater. Lett. 119, 12–15 (2014)

    Article  CAS  Google Scholar 

  59. Y.D. Mo, Q. Ru, X. Song, L.Y. Guo, J.F. Chen, X.H. Hou, S.J. Hu, Carbon 109, 616–623 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Guangxi Key Research and Development Program (Grant No. AB19110024) and the Guangxi University Student Innovation Foundation of China (Grant No. 202010593184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuehang Wu or Wenwei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Jiang, J., Xu, M. et al. Improved lithium storage performance of urchin-like CuO microspheres by stereotaxically constructed graphene mediating synergistic effect. J Mater Sci: Mater Electron 32, 8557–8569 (2021). https://doi.org/10.1007/s10854-021-05493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05493-6

Navigation