Skip to main content
Log in

Structural and antioxidant properties of guanylhydrazinium pyrazine-2-carboxylate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In general, molecules with certain functional groups such as amine (-NH2) and carboxyl (-COOH) can promote the growth of co-crystals leading to the formation of supramolecular networks. However, if the differences in the pKa values of the two molecules are large [pKa (base)—pKa (acid)], salts can result instead of ‘real’ co-crystals. Here, we report the formation of such salt by letting pyrazine-2-carboxylic acid (pKa = 2.9) crystallize together with aminoguanidine (pKa = 11.5; high Δpka = 8.6) a nitrogen-rich organic base. The title salt has been prepared by slow evaporation of an equimolar ratio of guanylhydrazine bicarbonate (i.e., aminoguanidine bicarbonate (AgunH.HCO3)) and pyrazine-2-carboxylic acid (Pymca) in aqueous medium. The salt was characterized by IR spectroscopy, powder and single-crystal X-ray diffraction techniques. This material shows enhanced antioxidant activity and this is due to the crucial role of hydrazinic moiety in the aminoguanidinium salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. A.N. Manin, A.P. Voronin, K.V. Drozd, A.V. Churakov, G.L. Perlovich, Pharmaceutical salts of emoxypine with dicarboxylic acids, Acta Cryst., C74 (2018) 797–806.

  2. A. Dalpiaz, B. Pavan, V. Ferretti, Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs? Drug Discov. Today 22, 1134–1138 (2017)

    Article  CAS  Google Scholar 

  3. N. Schultheiss, A. Newman, Pharmaceutical cocrystals and their physico- chemical properties. Cryst. Growth Des. 9(6), 2950–2967 (2009)

    Article  CAS  Google Scholar 

  4. K.V. Drozd, S.G. Arkhipov, E.V. Boldyreva, G.L. Perlovich, Crystal structure of a 1:1 salt of 4-aminobenzoic acid (vitamin B10) with pyrazinoic acid, Acta Cryst., E74 (2018) 1923–1927.

  5. S. Packiaraj, A. Pushpaveni, S. Govindarajan, J.M. Rawson, Structural and anti-oxidant properties of guanidinium pyrazole-3,5-dicarboxylates. Cryst. Eng. Commun. 18(41), 7978–7993 (2016)

    Article  CAS  Google Scholar 

  6. S. Packiaraj, A. Pushpaveni, C. Senthil, S. Govindarajan, J.M. Rawson, Preparation, thermal behavior, luminescent properties, and crystal structures of aminoguanidinium 2, n-pyridine-dicarboxylate (n= 3, 4, 5, and 6) salts. J. Therm. Anal. Calorim. 119, 15–25 (2015)

    Article  CAS  Google Scholar 

  7. P.P. Deyn (ed.), Guanidino Compounds in Biology and Medicine (London, England, J. Libbey, 1992)

    Google Scholar 

  8. V. Sivashankar, R. Siddheswaran, P. Murugakoothan, Synthesis, growth, structural, optical and thermal properties of a new semiorganic nonlinear optical guanidinium perchlorate single crystal. Mater. Chem. Phys. 130, 323–326 (2011)

    Article  CAS  Google Scholar 

  9. R.E. Khomaa, V.O. Gelmboldta, V.N. Baumerd, O.V. Shishkind, L.V. Koroevaa, Synthesis and structure of aminoguanidinium sulfite monohydrate. Russ. J. Inorg. Chem. 58, 843–847 (2013)

    Article  Google Scholar 

  10. J.H. Bryd, The crystal structure of aminoguanidine hydrochloride. Acta Cryst. 10, 677–720 (1957)

    Article  Google Scholar 

  11. A. Akella, D.A. Keszler, Aminoguanidinium nitrate, Acta Cryst., C50 (1994) 1974–1976.

  12. E.R. Khomaa, O.V. Gelmboldta, N.V. Baumerd, V.O. Shishkind, V.L. Koroevaa, Synthesis and Structure of Aminoguanidinium Sulfite Monohydrate. Russ. J. Inorg. Chem. 58(7), 843–847 (2013)

    Article  Google Scholar 

  13. I. Nemec, Z. Machackova, K. Teubner, I. Cisarova, P. Vanek, Z. Micka, The structural phase transitions of aminoguanidinium(1+) dihydrogen phosphate – study of crystal structures, vibrational spectra and thermal behavior. J. Solid State Chem. 177(12), 4655–4664 (2004)

    Article  CAS  Google Scholar 

  14. J.N. Adams, The crystal structure of aminoguanidinium dihydrogen orthophosphate. Acta Cryst., B33 (1997) 1513–1515.

  15. M. Koskinen, I. Mutikainen, H.A. Elo, Aminoguanidinium(+2)-sulpahte. Z. Naturforsch., 49b (1994) 556.

  16. I. Mutikainen, M. Koskinen, H.A. Elo, Crystallographic study on aminoguanidine dinitrate. Pharmazie. 49C, 739 (1994)

    Google Scholar 

  17. T. Kolev, R. Petrova, Zwitterionic 2-guanidinium-1-aminocarboxylate monohydrate. Acta Cryst., E59 (2003) 447–449.

  18. J.T. Koskinen, M. Koskinen, I. Mutikainen, P. Tilus, B. Mannfors, H.A. Elo, Experimental and Computational Studies on Aminoguanidine Free Base, Monocation and Dication, Z. Naturforsch., 52b (1997) 1259.

  19. M. Koskinen, I. Mutikainen, P. Tilus, E. Petittari, M. Korvela, H.A. Elo, Structure of aminoguanidine hemioxalate. Implications for the synthesis of amidinohydrazones. Monatsh. Chem. 128, 767–775 (1997)

    Article  CAS  Google Scholar 

  20. Z. Machackova, I. Nemec, K. Teubner, P. Nemec, P. Vanek, Z. Micka, The crystal structure, vibrational spectra, thermal behavior and second harmonic generation of aminoguanidinium (1+) hydrogen (L)-tartrate monohydrate. J. Mol. Struc. 832, 101–107 (2007)

    Article  CAS  Google Scholar 

  21. T. Kolev, Z. Glavcheva, R. Stahl, H. Preut, P. Bleckmann, V. Radomirska, Aminoguanidinium Squarate. Acta Cryst., C53 (1997).

  22. S. Murugavel, P.S. Kannan, A. Subbiah Pandi, S. Govindarajan, R. Selvakumar, Aminoguanidinium hydrogen succinate. Acta Cryst., E65 (2009) o454.

  23. S. Murugavel, G. Ganesh, A. Pandi, S. Govindarajan, R. Selvakumar, Aminoguanidinium hydrogen fumarate. Acta Cryst. E65, o548 (2009)

    Google Scholar 

  24. M. Göbel, T.M. Klapötke, Potassium-, ammonium-, hydrazinium-, guanidinium-, aminoguanidinium-, diaminoguanidinium-, triaminoguanidinium- and melaminium nitroformate-synthesis, characterization and energetic properties. Z. Anorg. Allg. Chem. 633, 1006–1017 (2007)

    Article  Google Scholar 

  25. T. Premkumar, R. Selvakumar, N.P. Rath, S. Govindarajan, Synthesis and spectroscopic, thermal and crystal structure studies of hydrazinium hydrogensuccinate. S. Afr. J. Chem. 67, 85–90 (2014)

    Google Scholar 

  26. S. Vairam, S. Govindarajan, New hydrazinium salts of benzene tricarboxylic and tetracarboxylic acids - Preparation and their thermal studies. Thermochim. Acta 414(2), 263–270 (2004)

    Article  CAS  Google Scholar 

  27. T. Premkumar, S. Govindarajan, The chemistry of hydrazine derivatives - Thermal behavior and characterisation of hydrazinium salts and metal hydrazine complexes of 4,5-imidazoledicarboxylic acid. Thermochim. Acta 386(1), 35–42 (2002)

    Article  CAS  Google Scholar 

  28. T. Premkumar, S. Govindarajan, W.-P. Pan, Preparation, spectral and thermal studies of pyrazinecarboxylic acids and their hydrazinium salts. J Chem Sci. 115(2), 103–111 (2003)

    Article  CAS  Google Scholar 

  29. K. Saravanan, S. Govindarajan, Preparation and Thermal Reactivity Of Hydrazinium 2, n-pyridinedicarboxylates (n=3, 4, 5 and 6). J. Therm. Anal. Calorim. 73, 951–959 (2000)

    Article  Google Scholar 

  30. A. Pushpaveni, S. Packiaraj, S. Govindarajan, G.T. McCandless, C.F. Fronczek, F.R. Fronczek, Structural resemblance and variation in transition metal complexes derived from dipicolinic acid and guanylhydrazine. Inorganica Chimica Acta 471(24), 537–549 (2018)

    Article  CAS  Google Scholar 

  31. K.D. Prasad, S. Cherukuvada, R. Ganduri, L.D. Stephen, S. Perumalla, T.N. Guru Row, Differential Cocrystallization behavior of isomeric pyridine carboxamides toward anti-tubercular drug Pyrazinoic acid. Cryst. Growth Des. 15, 858 (2015). https://doi.org/10.1021/cg501642m

    Article  CAS  Google Scholar 

  32. W. Xu, K. Hu, Y. Lu, H. Ye, S. Jin, M. Li, M. Guo, D. Wang, The crystal structures of ten supramolecular salts of benzylamine and organic acids. J. Mol. Struct. 1219, 128554–128578 (2020)

    Article  CAS  Google Scholar 

  33. W. Fang, B. Chen, D. Chen, S. Wang, Y. Yan, S. Jin, W. Xu, D. Wang, Seven supramolecular adducts of 4-dimethylaminopyridine and carboxylic acids constructed by classical H-Bonds and some non covalent interactions. J. Mol. Struct. 1203, 127353 (2020). https://doi.org/10.1016/j.molstruc.2019.127353

    Article  CAS  Google Scholar 

  34. J.A. Fernandes, B. Liu, J.P.C. Tomé, L. Cunha-Silva, F.A. Almeida Paz, Crystal structure of 5-amino-4H-1,2,4-triazol-1-ium pyrazine-2-carboxylate: an unexpected salt arising from the decarboxylation of both precursor, Acta Cryst., E71 (2015) 840–843.

  35. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, “Vogel’s Textbook of Quantitative Chemical Analysis”. 1986,5thEd.

  36. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, Olex2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009)

    Article  CAS  Google Scholar 

  37. L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard, H. Puschmann, The anatomy of a comprehensive constrained, restrained, refinement program for the modern computing environment - olex2 disected. Acta. Cryst. A A71, 59–71 (2015)

    Article  Google Scholar 

  38. F. Kleemiss, O.V. Dolomanov, M. Bodensteiner, N. Peyerimhoff, L. Midgley, L.J. Bourhis A. Genoni, L.A. Malaspina, D. Jayatilaka, J.L. Spencer, F. White, B. GrundkStock, S. Steinhauer D. Lentz, H. Puschmann, S. Grabowsky, Accurate crystal structures and chemical properties from NoSpherA2, Chem. Sci., (2021).

  39. P. Prieto, M. Pineda, M. Aguilar, Spectrophotometric quantization of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 69, 337–341 (1992)

    Google Scholar 

  40. K. Nagendra Prasad, B. Yang, S. Yang, Y. Chen, M. Zhao, M. Ashraf, Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem. 116, 1–7 (2009)

    Article  CAS  Google Scholar 

  41. S. Packiaraj, S. Govindarajan, Synthesis, thermal behaviour, XRD, and luminescent properties of lighter lanthanidethiodipropionate hydrates containing aminogunidine as neutral ligand, Open. J. Inorgan. Chem. 4(3), 41–49 (2014)

    Google Scholar 

  42. S. Packiaraj, P. Kanchana, A. Pushpaveni, H. Puschmann, S. Govindarajan, Different coordination geometries of lighter lanthanates driven by the symmetry of guanidines as charge compensators. New J. Chem. 43(2), 979–991 (2019)

    Article  CAS  Google Scholar 

  43. T.L. Kumar, P. Vishweshwar, J.M. Babu, K. Vyas, Salts of hydrates of imiquimod, an immune response modifier. Cryst. Growth. Des. 9, 4822–4829 (2009)

    Article  CAS  Google Scholar 

  44. U.P. Singh, S. Narang, A supramolecular approach towards the construction of molecular salts using phosphonic acid and pyrazole. Cryst. Eng. Comm. 16, 7777–7789 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. P. and L. K wishes to thank URF for the award of a research fellowship in science for meritorious students under the University Research Fellowship. The author S. G. thanks the UGC-SAP-DRS II, New Delhi (India), for financial support. S. G. is also thankful for the award of UGC-Emeritus Fellowship by UGC, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Packiaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packiaraj, S., Kousalya, L., Pushpaveni, A. et al. Structural and antioxidant properties of guanylhydrazinium pyrazine-2-carboxylate. J Mater Sci: Mater Electron 32, 7704–7718 (2021). https://doi.org/10.1007/s10854-021-05489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05489-2

Navigation