Skip to main content
Log in

Preparation and modification of ZnSb-based phase change storage films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the mechanical and electrical properties of Zn–Sb thin films with different Zn contents were focused; the corresponding improvement mechanism is also discussed. It is found that the maximum phase transition temperature of the film is 250 °C when the Zn content is about 50 at%. The crystallization activation energy of the film also reached a maximum of 4.549 eV. The micro-structure analysis result of these annealed films through XRD showed that when the Zn content is less than 50 at.%, the Sb crystallization firstly reduces the amorphous thermal stability of the material, while the film with the highest crystallization activation energy forms the ZnSb phase. Besides, adding N element greatly increases the resistance ratio of the film before and after the phase change and the phase change temperature point, the maximum temperature reaches 265 °C, and the resistance ratio reaches 104 orders of magnitude. The doping of N also increases the density of the deposited film. When the N content is less, some N elements fill the defects caused by physical deposition, increase the density of the film, and increase the phase transition temperature of the film. The N atoms in the film are more likely to bond with Zn when N content is high, forming a Zn–N bond, and even forming a Zn3N2 phase, so that the phase transition temperature of the film is lowered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Bez, E. Camerlenghi, A. Modelli et al., Introduction to flash memory. Proc. IEEE 91(4), 489–502 (2003)

    Article  Google Scholar 

  2. S.K. Lai, Flash memories: successes and challenges. IBM J. Res. Dev. 52(5), 529–535 (2008)

    Article  Google Scholar 

  3. Y. Zhang, S. Swanson, A study of application performance with non-volatile main memory, in 31st Symposium on Mass Storage Systems and Technologies (MSST) (IEEE, Santa Clara, 2015), p. 1–10.

  4. R.C. Sousa, I.L. Prejbeanu, Non-volatile magnetic random access memories (MRAM). C R Phys. 6(9), 1013–1021 (2005)

    Article  CAS  Google Scholar 

  5. A. Kostrov, V. Stempitsky, Nonvolatile memory based on magnetic tunnel junction, in Advanced Technologies for Communications (ATC) (IEEE, Hanoi, Vietnam, 2012), p. 9–13.

  6. F. Pan, S. Gao, C. Chen et al., Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R Rep. 83(1), 1–59 (2014)

    Article  Google Scholar 

  7. T.C. Chang, K.C. Chang, T.M. Tsai et al., Resistance random access memory. Mater. Today 19(5), 254–264 (2016)

    Article  CAS  Google Scholar 

  8. J. Maimon, K. Hunt, J. Rodgers, Results of radiation effects (chk 14 & 16 duplicate raise query) on a chalcogenide non-volatile memory array, in Aerospace Conference et al 2004 Proceedings (IEEE, Big Sky, MT, USA, 2004) p. 2306–2315

  9. M.H. Jang, S.J. Park, S.J. Park et al., The origin of the resistance change in GeSbTe films. Appl. Phys. Lett. 97(15), 152–163 (2010)

    Google Scholar 

  10. Y. Xie, Modeling, architecture, and applications for emerging memory technologies. IEEE Des. Test Comput. 28(1), 44–51 (2011)

    Article  Google Scholar 

  11. S. Raoux, W. Wełnic, D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110(1), 240–267 (2009)

    Article  Google Scholar 

  12. J. Orava, A.L. Greer, Chalcogenides for phase-change memory. Handb. Therm. Anal. Calorim. 6(1), 685–734 (2018)

    Article  CAS  Google Scholar 

  13. D. Ielmini, A.L. Lacaita, Phase change materials in non-volatile storage. Mater. Today 14(12), 600–607 (2011)

    Article  CAS  Google Scholar 

  14. X. Zhou, L. Wu, Z. Song et al., Nitrogen-doped Sb-rich Si-Sb-Te phase-change material for high-performance phase-change memory. Acta Mater. 61(19), 7324–7333 (2013)

    Article  CAS  Google Scholar 

  15. Y. Yin, S. Morioka, S. Kozaki et al., Oxygen-doped Sb2Te3 for high-performance phase-change memory. Appl. Surf. Sci. 349(1), 230–234 (2015)

    Article  CAS  Google Scholar 

  16. C. Peng, L. Wu, Z. Song et al., Performance improvement of Sb2Te3 phase change material by Al doping. Appl. Surf. Sci. 257(24), 10667–10670 (2011)

    Article  CAS  Google Scholar 

  17. X. Shen, J. Li, G. Wang et al., Fast crystallization of Mg-doped Sb4Te for phase change memory. Vacuum 112(1), 33–37 (2015)

    Article  CAS  Google Scholar 

  18. P.C. Chang, H.W. Huang, C.C. Chang et al., Ga19Sb81 film for multi-level phase-change memory. Thin Solid Films 544(1), 107–111 (2013)

    Article  CAS  Google Scholar 

  19. C.C. Chang, C.Y. Hung, K.F. Kao et al., Phase transformation in Mg-Sb thin films. Thin Solid Films 518(24), 7403–7406 (2010)

    Article  CAS  Google Scholar 

  20. Y. Chen, G. Wang, X. Shen et al., Crystallization behaviors of ZnxSb100-x thin films for ultralong data retention phase change memory applications. Cryst. Eng. Commun. 16(5), 757–762 (2014)

    Article  CAS  Google Scholar 

  21. C.C. Chang, C.T. Lin, P.C. Chang et al., Phase stability, bonding and electrical conduction of amorphous carbon-added Sb films. Scripta Mater. 65(11), 950–953 (2011)

    Article  CAS  Google Scholar 

  22. X.F. Zhu, The effect of preparation process on the structure and optical waveguide characteristics of zinc nitride thin films (Shandong Jianzhu University, 2017).

  23. F. Rao, K. Ding, Y. Zhou et al., Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358(6369), 1423–1427 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiying Zhou.

Ethics declarations

Conflicts of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, X., Du, L. et al. Preparation and modification of ZnSb-based phase change storage films. J Mater Sci: Mater Electron 32, 8503–8513 (2021). https://doi.org/10.1007/s10854-021-05472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05472-x

Navigation