Skip to main content

Advertisement

Log in

Facile synthesis of ZnO–CoMoO4 nanocomposite using bio-organic fuel for energy storage application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Supercapacitors are the highly investigated energy storage devices to solve the global energy storage problems. The metal oxide nanomaterials as electrode-active materials yield the desirable specific capacitance. However, the higher economic and environmental costs associated with the synthesis of nanomaterials limit their extensive implication in supercapacitors. In this work, the ternary metal oxides nanocomposite of zinc, cobalt, and molybdenum was synthesized by green, economic and simple sol–gel synthesis route using the extracted fuel of E. cognata and the precursors salts. The as-synthesized ZnO–CoMoO4 nanocomposite was investigated as supercapacitor electrode candidate. A notable capacitance of 294.7 F/g was obtained for ZnO–CoMoO4 electrode. The specific energy density of ~ 8 Wh/Kg was found from charge–discharge measurements. The ZnO–CoMoO4 nanocomposite displayed almost 100% Coulombic efficiency over 10,000 cycles of repeated charge–discharge testing indicating its excellent stability. The lower Ri of 0.8 Ω was observed in the current study demonstrating the lower resistance. Consequently, the nano-scaled and phyto-fueled ternary composites of ZnO–CoMoO4 exhibited enhanced electrochemical properties toward supercapacitor without stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Fu, Q. Qu, R. Holze, V.V. Kondratiev, Y. Wu, Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrodes: the best of both worlds? J. Mater. Chem. A 7(25), 14937–14970 (2019)

    CAS  Google Scholar 

  2. S. Lichušina, L. Staišiūnas, V. Jasulaitienė, A. Selskis, K. Leinartas, Capacitive properties, structure, and composition of porous Co hydroxide/oxide layers formed by dealloying of Zn–Co alloy. J. Appl. Electrochem. 49(5), 503–515 (2019)

    Google Scholar 

  3. W. Su, R. Miao, B. Tao, F. Miao, High-performance symmetric supercapacitor based on flower-like zinc-cobalt-molybdenum hybrid metal oxide. Ionics 25(11), 5419–5427 (2019)

    CAS  Google Scholar 

  4. J. Bhagwan, G. Nagaraju, B. Ramulu, J.S. Yu, Promotive effect of MWCNT on ZnCo2O4 hexagonal plates and their application in aqueous asymmetric supercapacitor. J. Electrochem. Soc. 166(2), A217–A224 (2019)

    CAS  Google Scholar 

  5. A. Ali, M. Ammar, M. Ali, Z. Yahya, M.Y. Javaid, S. ul Hassan, T. Ahmed, Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 9(47), 27432–27438 (2019)

    Google Scholar 

  6. I. Shakir, M. Shahid, S. Cherevko, C.H. Chung, D.J. Kang, Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3–MWCNT nanocomposites. Electrochim. Acta 58, 76–80 (2011)

    CAS  Google Scholar 

  7. Q. Zhang, Z. Liu, B. Zhao, Y. Cheng, L. Zhang, H.H. Wu et al., Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 16, 632–645 (2019)

    Google Scholar 

  8. I. Hussain, S.G. Mohamed, A. Ali, N. Abbas, S.M. Ammar, W. Al Zoubi, Uniform growth of Zn-Mn-Co ternary oxide nanoneedles for high-performance energy-storage applications. J. Electroanal. Chem. 837, 39–47 (2019)

    CAS  Google Scholar 

  9. D. Kong, Y. Wang, S. Huang, J. Hu, Y. Von Lim, B. Liu et al., 3D self-branched zinc-cobalt Oxide@N-doped carbon hollow nanowall arrays for high-performance asymmetric supercapacitors and oxygen electrocatalysis. Energy Storage Mater. 23, 653–663 (2019)

    Google Scholar 

  10. C. Chen, S. Wang, X. Luo, W. Gao, G. Huang, Y. Zeng, Z. Zhu, Reduced ZnCo2O4@NiMoO4·H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors. J. Power Sources 409, 112–122 (2019)

    CAS  Google Scholar 

  11. W. Li, X. Wang, Y. Hu, L. Sun, C. Gao, C. Zhang et al., Hydrothermal synthesized of CoMoO4 microspheres as excellent electrode material for supercapacitor. Nanoscale Res. Lett. 13(1), 120 (2018)

    Google Scholar 

  12. Y. Yang, Y. Zhou, Z. Hu, W. Wang, X. Zhang, L. Qiang, Q. Wang, 3D thin-wall cell structure nickel-cobalt-molybdenum ternary phosphides on carbon cloth as high-performance electrodes for asymmetric supercapacitors. J. Alloys Compd. 772, 683–692 (2019)

    CAS  Google Scholar 

  13. Z. Xu, T. Wang, L. Wang, J. Xu, P. Liu, X. Lan et al., Aniline-grafting graphene oxide/polyaniline composite prepared via interfacial polymerization with high capacitive performance. Int. J. Energy Res. 43(13), 7693–7701 (2019)

    CAS  Google Scholar 

  14. K.D. Poopalam, L. Raghunanan, L. Bouzidi, S.K. Yeong, S.S. Narine, Lipid-derived monoamide as phase change energy storage materials. Int. J. Energy Res. 43(13), 6934–6950 (2019)

    CAS  Google Scholar 

  15. A. Manohar, V. Vijayakanth, R. Hong, Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci.: Mater. Electron. 31(1), 799–806 (2020)

    CAS  Google Scholar 

  16. A. Manohar, C. Krishnamoorthi, Low Curie-transition temperature and superparamagnetic nature of Fe3O4 nanoparticles prepared by colloidal nanocrystal synthesis. Mater. Chem. Phys. 192, 235–243 (2017)

    CAS  Google Scholar 

  17. A. Manohar, C. Krishnamoorthi, Magnetic and photocatalytic studies on Zn1−xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method. J. Photochem. Photobiol. B 177, 95–104 (2017)

    CAS  Google Scholar 

  18. A. Manohar, C. Krishnamoorthi, Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method. J. Photochem. Photobiol. B 173, 456–465 (2017)

    CAS  Google Scholar 

  19. A. Manohar, C. Krishnamoorthi, Structural, Raman, magnetic and other properties of co-substituted ZnFe2O4 nanocrystals synthesized by solvothermal reflux method. J. Mater. Sci.: Mater. Electron. 29(1), 737–745 (2018)

    CAS  Google Scholar 

  20. A. Manohar, C. Krishnamoorthi, Synthesis and magnetic hyperthermia studies on high susceptible Fe1−xMgxFe2O4 superparamagnetic nanospheres. J. Magn. Magn. Mater. 443, 267–274 (2017)

    CAS  Google Scholar 

  21. S. Bhoyate, P.K. Kahol, B. Sapkota, S.R. Mishra, F. Perez, R.K. Gupta, Polystyrene activated linear tube carbon nanofiber for durable and high-performance supercapacitors. Surf. Coat. Technol. 345, 113–122 (2018)

    CAS  Google Scholar 

  22. S. Palchoudhury, K. Ramasamy, R.K. Gupta, A. Gupta, Flexible supercapacitors: a materials perspective. Front. Mater. 5, 83 (2019)

    Google Scholar 

  23. C. Zequine, S. Bhoyate, F. Wang, X. Li, K. Siam, P.K. Kahol, R.K. Gupta, Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage. J. Alloys Compd. 784, 1–7 (2019)

    CAS  Google Scholar 

  24. J.L. Aleixandre-Tudo, W. Du Toit, The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking, in Frontiers and New Trends in the Science of Fermented Food and Beverages. (IntechOpen, London, 2018)

    Google Scholar 

  25. E. Duraisamy, H.T. Das, A.S. Sharma, P. Elumalai, Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@ carbon nanocomposite. New J. Chem. 42(8), 6114–6124 (2018)

    CAS  Google Scholar 

  26. A. Pramanik, S. Maiti, M. Sreemany, S. Mahanty, High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life. J. Nanopart. Res. 18(4), 93 (2016)

    Google Scholar 

  27. M. Abu-Samha, K.J. Børve, M. Winkler, J. Harnes, L.J. Saethre, A. Lindblad et al., The local structure of small water clusters: imprints on the core-level photoelectron spectrum. J. Phys. B 42(6), 069801 (2009)

    Google Scholar 

  28. A. Furlan, J. Lu, L. Hultman, U. Jansson, M. Magnuson, Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites. J. Phys.: Condens. Matter 26(41), 415501 (2014)

    Google Scholar 

  29. A. Manohar, C. Krishnamoorthi, Site selective Cu2+ substitution in single crystal Fe3O4 biocompatible nanospheres by solvothermal reflux method. J. Cryst. Growth 473, 66–74 (2017)

    CAS  Google Scholar 

  30. A. Manohar, C. Krishnamoorthi, Structural, optical, dielectric and magnetic properties of CaFe2O4 nanocrystals prepared by solvothermal reflux method. J. Alloys Compd. 722, 818–827 (2017)

    CAS  Google Scholar 

  31. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A 125(7), 477 (2019)

    CAS  Google Scholar 

  32. S.B. Jaffri, K.S. Ahmad, Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46(sup1), 127–137 (2018)

    CAS  Google Scholar 

  33. J.P. Mehta, T. Tian, Z. Zeng, G. Divitini, B.M. Connolly, P.A. Midgley et al., Sol-Gel synthesis of robust metal–organic frameworks for nanoparticle encapsulation. Adv. Func. Mater. 28(8), 1705588 (2018)

    Google Scholar 

  34. D. Gnanasangeetha, D. SaralaThambavani, One pot synthesis of zinc oxide nanoparticles via chemical and green method. Res. J. Mater. Sci. 2320, 6055 (2013)

    Google Scholar 

  35. H.A. Abdelgadir, J. Van Staden, Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review. S. Afr. J. Bot. 88, 204–218 (2013)

    CAS  Google Scholar 

  36. S. Mondal, D. Ghosh, K. Ramakrishna, A complete profile on blind-your-eye mangrove Excoecaria agallocha L. (Euphorbiaceae): ethnobotany, phytochemistry, and pharmacological aspects. Pharmacogn. Rev. 10(20), 123 (2016)

    CAS  Google Scholar 

  37. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Green synthesis of ZnO–Co3O4 nanocomposite using facile foliar fuel and investigation of its electrochemical behaviour for supercapacitors. New J. Chem. 44, 18281–18292 (2020)

    CAS  Google Scholar 

  38. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Effects of bioactive compounds on the morphology and surface chemistry of MoO3/ZnMoO4 nanocomposite for supercapacitor. J. Mater. Sci. 55, 7743–7759 (2020)

    CAS  Google Scholar 

  39. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Sustainable synthesis of organic framework derived ZnO nanoparticles for fabrication of supercapacitor electrode. J. Environ. Technol. (2020). https://doi.org/10.1080/09593330.2020.1797899

    Article  Google Scholar 

  40. L. Chauhan, A.K. Shukla, K. Sreenivas, Dielectric and magnetic properties of nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceram. Int. 41(7), 8341–8351 (2015)

    CAS  Google Scholar 

  41. C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesha, P. Manjunatha, Sol–gel synthesis using glacial acetic acid and optical properties of anatase Cu–TiO2 nanoparticles. J. Nanoeng. Nanomanuf. 2(1), 91–98 (2012)

    CAS  Google Scholar 

  42. H. Wang, C. Shen, J. Liu, W. Zhang, S. Yao, Three-dimensional MnCo2O4/graphene composites for supercapacitor with promising electrochemical properties. J. Alloys Compd. 792, 122–129 (2019)

    CAS  Google Scholar 

  43. H. Wu, Z. Lou, H. Yang, G. Shen, A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 7(5), 1921–1926 (2015)

    CAS  Google Scholar 

  44. J. Li, C. Zhao, Y. Yang, C. Li, T. Hollenkamp, N. Burke et al., Synthesis of monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors. J. Alloys Compd. 810, 151841 (2019)

    CAS  Google Scholar 

  45. M.S. Yadav, A.K. Sinha, M.N. Singh, Electrochemical behaviour of ZnO–AC based nanocomposite electrode for supercapacitor. Mater. Res. Express 5(8), 085503 (2018)

    Google Scholar 

  46. Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv, B. Yang, High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res. Lett. 8(1), 1–9 (2013)

    Google Scholar 

  47. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A. Thomas, M.A. Malik, Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage properties. RSC Adv. 10(14), 8115–8129 (2020)

    CAS  Google Scholar 

  48. W.R. Rolim, M.T. Pelegrino, B. de Araújo Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes et al., Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463, 66–74 (2019)

    CAS  Google Scholar 

  49. A. Hussain, M. Oves, M.F. Alajmi, I. Hussain, S. Amir, J. Ahmed, I. Ali, Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: anticancer and antimicrobial activities. RSC Adv. 9(27), 15357–15369 (2019)

    CAS  Google Scholar 

  50. A. Shelar, J. Sangshetti, S. Chakraborti, A.V. Singh, R. Patil, S. Gosavi, Helminthicidal and larvicidal potentials of biogenic silver nanoparticles synthesized from medicinal plant Momordica charantia. Med. Chem. 15(7), 781–9 (2019)

    CAS  Google Scholar 

  51. S.P. Badwal, S.S. Giddey, C. Munnings, A.I. Bhatt, A.F. Hollenkamp, Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2, 79 (2014)

    Google Scholar 

  52. S. Oswald, Binding energy referencing for XPS in alkali metal-based battery materials research (I): basic model investigations. Appl. Surf. Sci. 351, 492–503 (2015)

    CAS  Google Scholar 

  53. S. Kalasina, P. Pattanasattayavong, M. Suksomboon, N. Phattharasupakun, J. Wutthiprom, M. Sawangphruk, A new concept of charging supercapacitors based on the photovoltaic effect. Chem. Commun. 53(4), 709–712 (2017)

    CAS  Google Scholar 

  54. S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces 7(26), 14211–14222 (2015)

    CAS  Google Scholar 

  55. Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran et al., Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 5(10), 8412–8419 (2011)

    CAS  Google Scholar 

  56. C. Zhang, S. Bhoyate, C. Zhao, P.K. Kahol, N. Kostoglou, C. Mitterer, C. Rebholz, Electrodeposited nanostructured CoFe2O4 for overall water splitting and supercapacitor applications. Catalysts 9(2), 176 (2019)

    Google Scholar 

  57. W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo et al., Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys. Chem. Chem. Phys. 13(32), 14462–14465 (2011)

    CAS  Google Scholar 

  58. Y.G. Zhu, Y. Wang, Y. Shi, J.I. Wong, H.Y. Yang, CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 3, 46–54 (2014)

    CAS  Google Scholar 

  59. T. Meng, Q.Q. Xu, Z.H. Wang, Y.T. Li, Z.M. Gao, X.Y. Xing, T.Z. Ren, Co3O4 nanorods with self-assembled nanoparticles in queue for supercapacitor. Electrochim. Acta 180, 104–111 (2015)

    CAS  Google Scholar 

  60. A. Habibi-Yangjeh, M. Mousavi, K. Nakata, Boosting visible-light photocatalytic performance of g-C3N4/Fe3O4 anchored with CoMoO4 nanoparticles: novel magnetically recoverable photocatalysts. J. Photochem. Photobiol. A 368, 120–136 (2019)

    CAS  Google Scholar 

  61. P.C. Kao, C.J. Hsieh, Z.H. Chen, S.H. Chen, Improvement of MoO3/Ag/MoO3 multilayer transparent electrodes for organic solar cells by using UV–ozone treated MoO3 layer. Sol. Energy Mater. Sol. Cells 186, 131–141 (2018)

    CAS  Google Scholar 

  62. L.S. Aravinda, K.K. Nagaraja, H.S. Nagaraja, K.U. Bhat, B.R. Bhat, ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim. Acta 95, 119–124 (2013)

    CAS  Google Scholar 

  63. W. Shaheen, M.F. Warsi, M. Shahid, M.A. Khan, M. Asghar, Z. Ali et al., Carbon coated MoO3 nanowires/graphene oxide ternary nanocomposite for high-performance supercapacitors. Electrochim. Acta 219, 330–338 (2016)

    CAS  Google Scholar 

  64. H. Xiao, W. Guo, B. Sun, M. Pei, G. Zhou, Mesoporous TiO2 and Co-doped TiO2 nanotubes/reduced graphene oxide composites as electrodes for supercapacitors. Electrochim. Acta 190, 104–117 (2016)

    CAS  Google Scholar 

  65. D. Guan, X. Gao, J. Li, C. Yuan, Enhanced capacitive performance of TiO2 nanotubes with molybdenum oxide coating. Appl. Surf. Sci. 300, 165–170 (2014)

    CAS  Google Scholar 

  66. C. Gervas, M.D. Khan, S. Mlowe, C. Zhang, C. Zhao, R.K. Gupta et al., Synthesis of off-stoichiometric CoS nanoplates from a molecular precursor for efficient H2/O2 evolution and supercapacitance. ChemElectroChem 6(9), 2560–2569 (2019)

    CAS  Google Scholar 

  67. K. Subramani, M. Sathish, Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications. Mater. Lett. 236, 424–427 (2019)

    CAS  Google Scholar 

  68. E. Dai, J. Xu, J. Qiu, S. Liu, P. Chen, Y. Liu, Co@Carbon and Co3O4@carbon nanocomposites derived from a single MOF for supercapacitors. Sci. Rep. 7(1), 12588 (2017)

    Google Scholar 

  69. L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2, 381 (2011)

    Google Scholar 

  70. J.S. Suroshe, S.S. Garje, Capacitive behaviour of functionalized carbon nanotube/ZnO composites coated on a glassy carbon electrode. J. Mater. Chem. A 3(30), 15650–15660 (2015)

    CAS  Google Scholar 

  71. T. Tao, Q. Chen, H. Hu, Y. Chen, MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Mater. Lett. 66(1), 102–105 (2012)

    CAS  Google Scholar 

  72. M.S. Yadav, N. Singh, A. Kumar, Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J. Mater. Sci.: Mater. Electron. 29(8), 6853–6869 (2018)

    CAS  Google Scholar 

  73. W.Q. Tang, J.Y. Xu, Z.Y. Gu, Metal–organic-framework-based gas chromatographic separation. Chemistry 14(20), 3462–3473 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors honorably acknowledge Education Commission of Pakistan (HEC), Environmental Sciences Department (Lab E-21) of Fatima Jinnah Women University (FJWU) Rawalpindi Pakistan and the faculty of FJWU. The authors sincerely acknowledge the School of Materials, University of Manchester U.K. Finally, the authors are acknowledging the Polymer Chemistry Program and the Kansas Polymer Research Center, Pittsburg State University for conducting the electrochemical part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, I., Ahmad, K.S., Zequine, C. et al. Facile synthesis of ZnO–CoMoO4 nanocomposite using bio-organic fuel for energy storage application. J Mater Sci: Mater Electron 32, 8460–8474 (2021). https://doi.org/10.1007/s10854-021-05465-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05465-w

Navigation