Skip to main content

Advertisement

Log in

Effect of Gd3+ doping on structural and optical properties of MgO–MgAl2O4 nanocomposites synthesized via co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, un-doped MgO–MgAl2O4 and Gd3+-doped MgO–MgAl2O4 nanocomposites have been synthesized via co-precipitation method. The effects of Gd3+ contents on the structureal and optical properties of MgO–MgAl2O4 nanocomposites were investigated using scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), X-ray diffraction, Fourier-transform infrared and UV–VIS spectroscopies. HRTEM shows that MgO–MgAl2O4 powder are uniform spherical shape nanoparticles. The XRD shows that the nanocomposites consist of face-centered cubic MgAl2O4 and MgO crystal structures. The average crystallite sizes of MgO–MgAl2O4 nanocomposites are in the range of 8–40 nm. The quantitative elemental analysis by EDX illustrates that the nanocomposite samples are nearly stoichiometric MgO–MgAl2O4 48 to 52%, respectively. Scanning electron microscopy was used to study the surface morphology of MgO–MgAl2O4 nanocomposites that reveals the existence of both the individual nanoparticles and their aggregates. The optical bandgap was decreased with the presence of Gd3+ from 4.85 to 3.66 eV for 0.0 and 3% of Gd3+ content, respectively. The photoluminescence of un-doped and Gd-doped MgO–MgAl2O4 nanocomposite showed a green emission in the range (545–565 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.J. Iqbal, B. Ismail, C. Rentenberge, H. Ipser, Modification of the physical properties of semiconducting MgAl2O4 by doping with a binary mixture of Co and Zn ions. Mater. Res. Bull. 46, 2271–2277 (2011)

    Article  CAS  Google Scholar 

  2. M. Han, Z. Wang, Y. Xu, R. Wu, S. Jiao, Y. Chen, S. Feng, Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.05.029

    Article  Google Scholar 

  3. W. Yana, J. Chen, N. Li, W. Qiu, Y. Wei, B. Han, Preparation and characterization of porous MgO–Al2O3 refractory aggregates using anin-situ decomposition poreforming technique. Ceram. Int. 41, 515–520 (2015)

    Article  Google Scholar 

  4. P. Biswas, K. Rajeswari, V. Mahendar, R. Johnson, Extrusion processing of dense MgAl2O4 spinel honeycombs with low relative density. Ceram. Int. 39, 9819–9821 (2013)

    Article  CAS  Google Scholar 

  5. I. Ganesh, Fabrication of magnesium aluminate (MgAl2O4) spinel foams. Ceram. Int. 37, 2237–2245 (2011)

    Article  CAS  Google Scholar 

  6. S. Ueno, T. Akatsu, H. Nakajima, Fabrication of porous magnesium spinel with directional pores by unidirectional solidification. Ceram. Int. 35, 2469–2473 (2009)

    Article  CAS  Google Scholar 

  7. S. Hashimoto, S. Honda, T. Hiramatsu, Y. Iwamoto, Fabrication of porous spinel (MgAl2O4) from porous alumina using a template method. Ceram. Int. 39, 2077–2081 (2013)

    Article  CAS  Google Scholar 

  8. F. Tavangarian, R. Emadi, Synthesis and characterization of pure nanocrystalline magnesium aluminate spinel powder. J. Alloys Compd. 489, 600–604 (2010)

    Article  CAS  Google Scholar 

  9. W.A.I. Tabaza, H.C. Swart, R.E. Kroon, Luminescence of Ce doped MgAl2O4 prepared by the combustion method. Phys. B 439, 109 (2014)

    Article  CAS  Google Scholar 

  10. M. Kumar, S.K. Gupta, An insight into optical spectroscopy of intense green emitting ZnAl2O4:Tb3+ nanoparticles: photo, thermally stimulated luminescence and EPR study. J. Lumin. 168, 151 (2015)

    Article  CAS  Google Scholar 

  11. L.T. Melato, T.E. Motaung, O.M. Ntwaeaborwa, S.V. Motloung, Effect of annealing at different time intervals on the structure, morphology and luminescent properties of MgAl2O4:0.3% In3þ nanophosphor prepared by citrate sol-gel method. Opt. Mater. 66, 319–326 (2017)

    Article  CAS  Google Scholar 

  12. M.Y. Nassar, I.S. Ahmed, I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) particles using sol-gel auto combustion method and their photocatalytic properties. Spectrochim. Acta Part A (2014). https://doi.org/10.1016/j.saa.2014.04.040

    Article  Google Scholar 

  13. V.M. Maphiri, F.B. Dejene, S.V. Motloung, Effects of Mg2+ concentration on the structure and optical properties of MgxAl2O3+x:0.88% Cd2+ (0.25 x 4.5) nano-powders synthesized via citrate sol-gel. Results Phys. 7, 3510–3521 (2017)

    Article  Google Scholar 

  14. R.J. Wiglusz, T. Grzyb, S. Lis, W. Strek, Hydrothermal preparation and photoluminescent properties of MgAl2O4:Eu3+ spinel nanocrystals. J. Lumin. 130, 434–441 (2010)

    Article  CAS  Google Scholar 

  15. E.N. Alvar, M. Rezaei, H.N. Alvar, Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technol. 2, 275–278 (2010)

    Article  Google Scholar 

  16. M.F. Zawrah, H. Hamaad, S. Meky, Synthesis and characterization of nano MgAl2O4 spinel by the co-precipitated method. Ceram. Int. 33, 969–978 (2007)

    Article  CAS  Google Scholar 

  17. Y. Fan, X.B. Lu, Y.W. Ni, H.J. Zhang, M.W. Zhu, Y. Li, J.P. , Catalytic destruction of chlorinated aromatic pollutants over mesoporous CuxMg1−xAl2O4 spinel oxides. Appl. Catal. B Environ. 101, 606–612 (2011)

    Article  CAS  Google Scholar 

  18. C. Păcurariu, I. Lazău, Z. Ecsedi, R. Lazău, P. Barvinschi, G. Mărginean, New synthesis methods of MgAl2O4spinel. J. Eur. Ceram. Soc. 27, 707–710 (2007)

    Article  Google Scholar 

  19. M.J. Iqbal, B. Ismail, Electric, dielectric and magnetic characteristics of Cr 3+ Mn3+ and Fe3+ substituted MgAl2O4: effect of pH and annealing temperature. J. Alloys Compd. 472, 434–440 (2009)

    Article  CAS  Google Scholar 

  20. X.Y. Chen, C. Ma, Z.J. Zhang, X.X. Li, Structure and photoluminescence study of porous red-emittingMgAl2O4:Eu3+ phosphor. Microporous Mesoporous Mater. 123, 202–208 (2009)

    Article  CAS  Google Scholar 

  21. W. Nantharak, W. Wattanathana, W. Klysubun, T. Rimpongpisarn, C. Veranitisagul, A. Laobuthee, N. Koonsaeng, Effect of local structure of Sm3+ in MgAl2O4:Sm3+ phosphors prepared by thermal decomposition of triethanol amine complex method on their luminescence property. J. Alloys Compd. 701, 1019 (2017)

    Article  CAS  Google Scholar 

  22. I. Omkaram, B. VengalaRao, S. Buddhudu, Photoluminescence properties of Eu3+: MgAl2O4 powder phosphor. J. Alloys Compd. 474, 565–568 (2009)

    Article  CAS  Google Scholar 

  23. Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou, P. Xu, Mn, Cr-co-doped MgAl2O4phosphors for white LEDs. J. Lumin. 131, 2359–2364 (2011)

    Article  CAS  Google Scholar 

  24. V. Singh, R.P.S. Chakradhar, J.L. Rao, D.K. Kim, Combustion synthesized MgAl2O4: Cr phosphors—An EPR and optical study. J. Lumin. 129, 130–134 (2009)

    Article  CAS  Google Scholar 

  25. R.J. Wiglusz, T. Grzyb, The effect of Tb3+ doping on the structure and spectroscopic properties of MgAl2O4nanopowders. Opt. Mater. 33, 1506–1513 (2011)

    Article  CAS  Google Scholar 

  26. S. Suguna, S. Shankar, S.K. Jaganathan, A. Manikandan, Novel synthesis of spinel MnxCo1−xAl2O4(x=0.0 to 1.0) nanocatalysts: effect of Mn2+ doping on structural, morphological, and opto-magnetic properties. J. Supercond. Nov. Magn. 30, 691–699 (2017)

    Article  CAS  Google Scholar 

  27. I.V. Beketov, A.I. Medvedev, O.M. Samatov, A.V. Spirina, K.I. Shabanova, Synthesis and luminescent properties of MgAl2O4: Eu nanopowders. J. Alloys Compd. 586, S472 (2013)

    Article  Google Scholar 

  28. M.S. Pathak, N. Singh, S. Vijay Singh, T.K.G. Watanabe, M.S. Rao, J.K. Lee, Narrowb and ultraviolet B emitting Gd doped CaAl2O4 phosphors - an ESR an d photoluminescence study. J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2018.07.019

    Article  Google Scholar 

  29. V.T. Gitsyna, I.V. Afanasyev-Charkin, Yu.G. Kazarinov, K.E. Sickafus, Optical transitions in magnesium aluminate spinel crystals of different compositions exposed to irradiation. Nucl. Instrum. Methods B218, 264–270 (2004)

    Article  Google Scholar 

  30. M.M. Shehata, A.M. Abdelreheem, S.A. Waly, A.H. Ashour, Cu and Ag nanoparticles films deposited on glass substrate using cold cathode ion source. J. Inorg. Organomet. Polym. 27, 720–727 (2017)

    Article  CAS  Google Scholar 

  31. F.T. Li, Y. Zhao, Y. Liu, Y.J. Hao, R.H. Liu, D.S. Zhao, Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders. Chem. Eng. J. 173, 750–759 (2011)

    Article  CAS  Google Scholar 

  32. R. Qindeel, Effect of gamma radiation on morphological & optical properties of ZnO Nanopowder. Results Phys. 7, 807–809 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

Author would like to wish their sincere thanks to Prof. Z. Ali, National Center for Radiation Research and Technology, for his adivce on writing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Shehata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata, M.M., Waly, S.A. & Abdelaziz, Y.A. Effect of Gd3+ doping on structural and optical properties of MgO–MgAl2O4 nanocomposites synthesized via co-precipitation method. J Mater Sci: Mater Electron 32, 7423–7430 (2021). https://doi.org/10.1007/s10854-021-05455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05455-y

Navigation