Skip to main content

Advertisement

Log in

Boron carbide nanowires from castor oil for optronic applications: a low‐temperature greener approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of one-dimensional nanostructures has revolutionized electronic and photonic industries because of their unique properties. The present paper reports the low-temperature green synthesis of boron carbide nanowires, of diameter 14 nm and length 2 µm, by the condensation method using castor oil as the carbon precursor. The nanowires synthesized exhibit beaded chain morphology, and bandgap energy of 2.08 eV revealed through the Tauc plot analysis. The structure of boron carbide nanowires is revealed by micro-Raman, Fourier transform infrared spectroscopic, and X-ray diffraction analyses. The thermogravimetric analysis of the sample reveals the excellent thermal stability. The photoluminescence study reveals the nanowire’s blue light emission capability under ultraviolet excitation, which is substantiated by the CIE plot suggesting its potential in photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Meyyappan, M.K. Sunkara, Inorganic Nanowires: Applications, Properties, and Characterization (CRC Press, Boca Raton, 2009).

    Google Scholar 

  2. G. Guisbiers, S. Mejía-Rosales, F. Leonard Deepak, J. Nanomater. (2012). https://doi.org/10.1155/2012/180976

    Article  Google Scholar 

  3. N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26, 2137–2184 (2014)

    Article  CAS  Google Scholar 

  4. D.N. McIlroy, A. Alkhateeb, D. Zhang, D.E. Aston, A.C. Marcy, M.G. Norton, J. Phys. 16, 415–440 (2004)

    Google Scholar 

  5. Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, J. Nanomater (2012). https://doi.org/10.1155/2012/624520

    Article  Google Scholar 

  6. X. Zhang, G. Wang, X. Liu, J. Wu, M. Li, J. Gu, H. Liu, B. Fang, J. Phys. Chem. C 112, 16845–16849 (2008)

    Article  CAS  Google Scholar 

  7. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353–389 (2003)

    Article  CAS  Google Scholar 

  8. R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22, 3326–3370 (2012)

    Article  CAS  Google Scholar 

  9. A. Khalil, B. Singh Lalia, R. Hashaikeh, M. Khraisheh, J. Appl. Phys. 114, 171301 (2013)

    Article  CAS  Google Scholar 

  10. C. Cheng, H.J. Fan, Nano Today 7, 327–343 (2012)

    Article  CAS  Google Scholar 

  11. S. Mondal, A.K. Banthia, J. Eur. Ceram. Soc. 25, 287–291 (2005)

    Article  CAS  Google Scholar 

  12. A.K. Suri, C. Subramanian, J.K. Sonber, T.C. Murthy, Int. Mater. Rev. 55, 4–40 (2010)

    Article  CAS  Google Scholar 

  13. D. Sarıyer, R. Küçer, N. Küçer, Procedia 195, 1752–1756 (2015)

    Google Scholar 

  14. L.L. Liu, G.G. He, Y.H. Wang, S.G. Hu, Cent. Eur. J. Energy Mater. 14, 1–13 (2017)

    Google Scholar 

  15. H.V. Saritha Devi, M.S. Swapna, V. Raj, G. Ambadas, S. Sankararaman, Mater. Res. Express 5, 015603 (2018)

    Article  CAS  Google Scholar 

  16. H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, Appl. Phys. A 124, 297 (2018)

    Article  CAS  Google Scholar 

  17. H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, Chin. Phys. B 27, 107702 (2018)

    Article  CAS  Google Scholar 

  18. X. Tao, L. Dong, X. Wang, W. Zhang, B.J. Nelson, X. Li, Adv. Mater. 22, 2055–2059 (2010)

    Article  CAS  Google Scholar 

  19. T. Ji-Fa, B. Li-Hong, W. Xing-Jun, H. Chao, L. Fei, L. Chen, S. Cheng-Min, W. Zong-Li, G. Chang-Zhi, G. Hong-Jun, Chin. Phys. Lett. 25, 3463 (2008)

    Article  Google Scholar 

  20. Y. Huang, F. Liu, Q. Luo, Y. Tian, Q. Zou, C. Li, C. Shen, S. Deng, C. Gu, N. Xu, H. Gao, Nano Res. 5, 896–902 (2012)

    Article  CAS  Google Scholar 

  21. Y. Zhang, Y. Zhang, H. Gong, J. Yu, J. Zhao, Z. Zhang, Y. Zhang, J. Sol-Gel. Sci. Technol. 80, 683–689 (2016)

    Article  CAS  Google Scholar 

  22. L.G. Sneddon, M.J. Pender, K.M. Forsthoefel, U. Kusari, X. Wei, J. Eur. Ceram. Soc. 25, 91–97 (2005)

    Article  CAS  Google Scholar 

  23. B. Li-Hong, L. Chen, T. Yuan, T. Ji-Fa, H. Chao, W. Xing-Jun, S. Cheng-Min, G. Hong-Jun, Chin. Phys. B 17, 4585–4591 (2008)

    Article  Google Scholar 

  24. M.G. Rodríguez, O.V. Kharissova, U. Ortiz-Mendez, Rev. Adv. Mater. Sci 7, 55–60 (2004)

    Google Scholar 

  25. B. Chang, B.L. Gersten, S.T. Szewczyk, J.W. Adams, Towards the preparation of boron carbide nanorods by carbothermal reaction method. In NSTI-Nanotech. 1, 369–372 (2006)

    CAS  Google Scholar 

  26. A. Velamakanni, K.J. Ganesh, Y. Zhu, P.J. Ferreira, R.S. Ruoff, Adv. Funct. Mater. 19, 3926–3933 (2009)

    Article  CAS  Google Scholar 

  27. R. Ma, Y. Bando, Chem. Mater. 14, 4403–4407 (2002)

    Article  CAS  Google Scholar 

  28. M.J. Pender, K.M. Forsthoefel, L.G. Sneddon, Pure Appl. Chem. 75, 1287–1294 (2003)

    Article  CAS  Google Scholar 

  29. D. Zhang, D.N. McIlroy, Y. Geng, M.G. Norton, J. Mater. Sci. Lett. 18, 349–351 (1999)

    Article  CAS  Google Scholar 

  30. R. Ma, Y. Bando, Chem. Phys. Lett. 364, 314–317 (2002)

    Article  CAS  Google Scholar 

  31. G.H. Rafi-ud-din, Z. Zahid, M. Asghar, E. Maqbool, T. Ahmad, T. Azhar, M. Subhani, Shahzad, J. Asian Ceram. Soc. 2, 268–274 (2014)

    Article  Google Scholar 

  32. F. Amir, E. Naser, R. Mehdi, B. Hamidreza, R. Alireza, Ceram. Silik. 56, 32–35 (2012)

    Google Scholar 

  33. N. Shawgi, S. Wang, Z. Wang, Y.N. Nie, J.Sol-Gel Sci. Technol. 82, 450–457 (2017)

    Article  CAS  Google Scholar 

  34. H.V. Saritha Devi, M.S. Swapna, S. Sankararaman, Phys. Status Solidi A 217, 1901014 (2020)

    Article  CAS  Google Scholar 

  35. S. Wang, Y. Li, X. Xing, X. Jing, J. Mater. Res. 33, 1659–1670 (2018)

    Article  CAS  Google Scholar 

  36. H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, J. Appl. Phys. 124, 065303 (2018)

    Article  CAS  Google Scholar 

  37. S. Avcioglu, F. Kaya, C. Kaya, Ceram. Int. 46, 17938–17950 (2020)

    Article  CAS  Google Scholar 

  38. U. Anselmi-Tamburini, Z.A. Munir, Y. Kodera, T. Imai, M. Ohyanagi, J. Am. Ceram. Soc. 88, 1382–1387 (2005)

    Article  CAS  Google Scholar 

  39. T. Fujita, P. Guan, K. Madhav Reddy, A. Hirata, J. Guo, M. Chen, Appl. Phys. Lett. 104, 021907 (2014)

    Article  CAS  Google Scholar 

  40. M. Jazirehpour, A. Alizadeh, J. Phys. Chem. C 113, 1657–1661 (2009)

    Article  CAS  Google Scholar 

  41. Z. Guan, T. Gutu, J. Yang, Y. Yang, A.A. Zinn, D. Li, T.T. Xu, J. Mater. Chem. 22, 9853–9860 (2012)

    Article  CAS  Google Scholar 

  42. V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 94, 3605–3628 (2011)

    Article  CAS  Google Scholar 

  43. K. Shirai, S. Emura, J. Phys. Condens. Matter 8, 10919 (1996)

    Article  CAS  Google Scholar 

  44. D. Simeone, C. Mallet, P. Dubuisson, G. Baldinozzi, C. Gervais, J. Maquet, J. Nucl. Mater. 277, 1 (2000)

    Article  CAS  Google Scholar 

  45. X.Q. Yan, W.J. Li, T. Goto, M.W. Chen, Appl. Phys. Lett. 88, 131905 (2006)

    Article  CAS  Google Scholar 

  46. H. Werheit, H. Binnenbruck, A. Hausen, Phys. Status Solidi B 47, 153–158 (1971)

    Article  CAS  Google Scholar 

  47. D.M. Bylander, L. Kleinman, S. Lee, Phy. Rev. B 42, 1394 (1990)

    Article  CAS  Google Scholar 

  48. I. Jimenez, L.J. Terminello, F.J. Himpsel, M. Grush, T.A. Callcott, J. Electron Spectrosc. Relat. Phenom. 101, 611–615 (1999)

    Article  Google Scholar 

  49. H. Werheit, M. Laux, U. Kuhlmann, Phys. Stat. Sol. (B) 176, 415 (1993)

    Article  CAS  Google Scholar 

  50. H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, Opt. Spectrosc. 125, 928 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author H.V. Saritha Devi is grateful to Kerala State Council for Science, Technology and Environment (KSCSTE) for the fellowship. We had put the manuscript in research square (DOI: https://doi.org/10.21203/rs.3.rs-60234/v1), because of the novelty and the relevance of work in the field of semiconductor technology where the nanowires find tremendous applications.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed to the literature survey, synthesis, characterization, interpretation and in reporting the result.

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SarithaDevi, H.V., Swapna, M.S. & Sankararaman, S. Boron carbide nanowires from castor oil for optronic applications: a low‐temperature greener approach. J Mater Sci: Mater Electron 32, 7391–7398 (2021). https://doi.org/10.1007/s10854-021-05449-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05449-w

Navigation