Skip to main content
Log in

Structural and optical investigation of Co-doped ZnO nanoparticles for nanooptoelectronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt-doped ZnO nanoparticles (NPs), with concentration of Co2+ varying between 1 and 5%, have been synthesized by a sol–gel procedure. The structural, morphological and optical properties of these nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet–visible (UV–Vis) measurements. The X-ray diffraction shows that these semiconductors crystallize in a wurtzite single crystalline phase with P63mc space group. In this structure, the cobalt ion Co2+ substitutes for a Zinc ion Zn2+ in a ZnO semiconductor and occupies a tetrahedral Td site symmetry surrounded by four oxygen atoms with a slight distortion. The TEM images characterize the morphology and crystalline structure of these semiconductors. From the UV spectra, a direct bandgap semiconductor was assumed for ZnO:Co2+ NPs. The bandgap energy of the ZnO lattice gradually decreases following the addition of Co2+ ions. The red absorption spectra are ascribed to the electronic transitions of Co2+ ion in ZnO. To determine the electronic structure of the transition ion Co2+, the crystal field theory is applied for the visible spectrum associated with the d–d transitions of this ion located at a Td site symmetry in ZnO NPs. The experimental and theoretical results of energy levels are in agreement. The results were compared to that published for the Co2+ ion in NP ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Liu, M.D. Rojas-Andrade, G. Chata, Y. Peng, G. Roseman, J.-E. Lu, G.L. Millhauser, C. Saltikov, S. Chen, Nanoscale 10, 158–166 (2018)

    Article  CAS  Google Scholar 

  2. D. Panda, T.-Y. Tseng, J. Mater. Sci. 48, 6849–6877 (2013)

    Article  CAS  Google Scholar 

  3. A. Chanda, S. Gupta, M. Vasundhara, S.R. Joshi, G.R. Mutta, J. Singh, RSC Adv. 7, 50527 (2017)

    Article  CAS  Google Scholar 

  4. P. Swapna, S. Venkatramana Reddy, IOP Conf. Ser.: Mater. Sci. Eng. 310, 111–119 (2018)

    Article  Google Scholar 

  5. A. Pescaglini et al., J. Mater. Chem. C 4, 1651–1657 (2016)

    Article  CAS  Google Scholar 

  6. J. El Ghoul, C. Barthou, L. El Mir, Physica E 44, 1910 (2012)

    Article  Google Scholar 

  7. J. El Ghoul, Bull. Mater. Sci. 39, 7–12 (2016)

    Article  Google Scholar 

  8. P. Lommens et al., Nanocrystals 118, 245–250 (2006)

    CAS  Google Scholar 

  9. F. Ochanda, K. Cho, D. Andala, T.C. Keane, A. Atkinson, W.E. Jones, Langmuir 25, 7547–7552 (2009)

    Article  CAS  Google Scholar 

  10. A. Vanaja, K. Srinivisa Rao, Adv. Nanopart. 5, 83–89 (2016)

    Article  CAS  Google Scholar 

  11. J. El Ghoul, M. Kraini, L. El Mir, J. Mater. Sci.: Mater. Electron. 26, 2555–2562 (2015)

    Google Scholar 

  12. J. El Ghoul, C. Barthou, L. El Mir, J. Superlattices Microstruct. 51, 942 (2012)

    Article  Google Scholar 

  13. J. El Ghoul, J. Mater. Sci.: Mater. Electron. 27, 2159–2165 (2016)

    Google Scholar 

  14. S. Nie, D. Dastan, J. Li, W.D. Zhou, S.S. Wu, Y.W. Zhou, X.T. Yin, J. Phys. Chem. Solids 150, 109864 (2021)

    Article  CAS  Google Scholar 

  15. D. Dastan, A. Banpurkar, J. Mater. Sci. Mater. Electron. 28, 3851–3859 (2016)

    Article  Google Scholar 

  16. A. Neffati, H. Souissi, S. KammounJ, Appl. Phys. 112, 083112 (2012)

    Article  Google Scholar 

  17. F. Mselmi, A. Neffati, S. Kammoun, J. Lumin. 198, 124–131 (2018)

    Article  CAS  Google Scholar 

  18. F. Mselmi, O. Taktak, H. Souissi, S. Kammoun, J. Lumin. 206, 319–325 (2019)

    Article  CAS  Google Scholar 

  19. D.J. Newman, B. Ng, Crystal Field Handbook (Cambridge University Press, Cambridge, 2000), p. 28

    Book  Google Scholar 

  20. J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, Cambridge, 1961), p. 222

    Google Scholar 

  21. S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition Metal Ions in Crystals (Academic Press, London, 1970).

    Google Scholar 

  22. O. Taktak, H. Souissi, O. Maalej, B. Boulard, S. Kammoun, J. Lumin. 180, 183–189 (2016)

    Article  CAS  Google Scholar 

  23. Y.Y. Yeung, C. Rudowicz, Comput. Chem. 16, 207 (1992)

    Article  CAS  Google Scholar 

  24. J. El Ghoul, J. Mater. Sci. Mater. Electron. 27, 2159 (2016)

    Article  Google Scholar 

  25. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Phys. B 407, 1223–1226 (2012)

    Article  CAS  Google Scholar 

  26. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715–9725 (2014)

    Article  CAS  Google Scholar 

  27. C.S. Barret, T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data (Pergamon Press, Oxford, 1980).

    Google Scholar 

  28. F.C.M. Vandepol, Am. Cer. Soc. 69(12), 1959–1965 (1990)

    CAS  Google Scholar 

  29. G.L. Tan, D. Tang, D. Dastan, A. Jafari, J.P.B. Silva, X.T. Yin, Mater. Sci. Semicond. Process 122, 105506 (2021)

    Article  CAS  Google Scholar 

  30. D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci: Mater. Electron. 27, 12291–12296 (2016)

    CAS  Google Scholar 

  31. A. Hassanien, A.A. Akl, A. Saaedicryst, CrystEngChem 20, 1716–1730 (2018)

    Article  CAS  Google Scholar 

  32. M.M. Obeid, H.R. Jappor, K. Al-Marzoki, I.A. Al-Hydary, S.J. Edrees, M.M. Shukur, RSC Adv. 9, 33207 (2019)

    Article  CAS  Google Scholar 

  33. R. Mguedla, A.B. Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, J. Alloys Compd. 812, 152130 (2020)

    Article  CAS  Google Scholar 

  34. L. Li, L. Han, Y. Han, Z. Yang, B. Su, Z. Lei, Nanomaterials 8, 687 (2018)

    Article  Google Scholar 

  35. R. Bairy, P. Shankaragouda Patil, S.R. Maidur, H. Vijeth, M.S. Murari, U. Bhat, RSC Adv. 9, 22302 (2019)

    Article  CAS  Google Scholar 

  36. A.A. Mosquera, D. Horwat, A. Rashkovskiy, A. Kovalev, P. Miska, D. Wainstein, J.M. Albella, J.L. Endrino, Sci. Rep. 3, 1714 (2013)

    Article  Google Scholar 

  37. O. Taktak, H. Souissi, S. Kammoun, J. Lumin. 161, 368–373 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kammoun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest no member of committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammoun, S., ghoul, J.E. Structural and optical investigation of Co-doped ZnO nanoparticles for nanooptoelectronic devices. J Mater Sci: Mater Electron 32, 7215–7225 (2021). https://doi.org/10.1007/s10854-021-05430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05430-7

Navigation