Skip to main content
Log in

Characteristic of As3Se4-based ovonic threshold switching device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ovonic threshold switching (OTS) selector has gained lots of attention due to its potential for realization of large density 3-dimensional (3D) stacking memory. In this letter, binary OTS material As3Se4 has been demonstrated with excellent performance. The OTS material showed outstanding selector performance such as large on-state current (5 mA) and low off-state current (~ 1nA), resulting in a large selectivity of 106. The device endurance can reach 2 × 106 times. The ON/OFF switching speed is 12/150 ns, respectively. The bandgap of the amorphous As3Se4 is about 1.55 eV. Combining the X-ray photoelectron spectroscopy and Raman results we found that the main structure motifs are AsSe3 pyramidal and As4Se3 in the amorphous As3Se4 film. The As3Se4 can be used as a base material for OTS device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. DerChang, S. Tang, I.V. Karpov, et al. In: 2009 IEEE International Electron Devices Meeting (IEDM) (2009)

  2. M. Zhu, K. Ren, Z. Song, MRS Bull. 44, 715 (2019). https://doi.org/10.1557/mrs.2019.206

    Article  CAS  Google Scholar 

  3. SR Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968). https://doi.org/10.1103/PhysRevLett.21.1450

    Article  Google Scholar 

  4. C. Yoo, W. Kim, J.W. Jeon et al., ACS Appl. Mater. Interfaces. 12, 23110 (2020). https://doi.org/10.1021/acsami.0c03747

    Article  CAS  Google Scholar 

  5. G. Liu, L. Wu, X. Chen et al., J. Alloys Compd. 792, 510 (2019). https://doi.org/10.1016/j.jallcom.2019.04.041

    Article  CAS  Google Scholar 

  6. S.D. Kim, H.W. Ahn, S. Shin et al., ECS Solid State Lett. 2, Q75 (2013). https://doi.org/10.1149/2.001310ssl

    Article  CAS  Google Scholar 

  7. J.Ho Lee, G.Hwan Kim, Y. Bae Ahn et al., Appl. Phys. Lett. 100, 123505 (2012). https://doi.org/10.1063/1.3696077

    Article  CAS  Google Scholar 

  8. G. Liu, T. Li, L. Wu et al., ACS Applied Nano Materials 2, 5373 (2019). https://doi.org/10.1021/acsanm.9b00734

    Article  CAS  Google Scholar 

  9. H. Cheng, W. Chien, I. Kuo et al. In: 2018 IEEE International Electron Devices Meeting (IEDM)IEEE (2018)

  10. H.Y. Cheng, W.C. Chien, I.T. Kuo et al. In: 2017 IEEE International Electron Devices Meeting (IEDM) (2017)

  11. T. Kim, D. Lee, J. Kim, H. Sohn, Appl. Phys. Express 13, 045003 (2020). https://doi.org/10.35848/1882-0786/ab827c

    Article  CAS  Google Scholar 

  12. M. Zhu, W. Song, P.M. Konze et al., Nat. Commun. 10, 3525 (2019). https://doi.org/10.1038/s41467-019-11506-0

    Article  CAS  Google Scholar 

  13. S.S. Sarsembinov, O.Y. Prikhodko, A.P. Ryaguzov, S.Y. Maksimova, Semicond. Sci. Technol. 16, 872 (2001). https://doi.org/10.1088/0268-1242/16/10/310

    Article  CAS  Google Scholar 

  14. A.S. Solieman, M.M. Hafiz, A.-hA. Abu-Sehly, A.-nA. Alfaqeer, J. Taibah Univ. Sci. 8, 282 (2014). https://doi.org/10.1016/j.jtusci.2014.01.002

    Article  Google Scholar 

  15. D. Ielmini, Y. Zhang, J. Appl. Phys. 102, 054517 (2007). https://doi.org/10.1063/1.2773688

    Article  CAS  Google Scholar 

  16. D. Ielmini, Y. Zhang, Appl. Phys. Lett. 90, 192102 (2007). https://doi.org/10.1063/1.2737137

    Article  CAS  Google Scholar 

  17. R.A. Street, NF Mott, Phys. Rev. Lett. 35, 1293 (1975). https://doi.org/10.1103/PhysRevLett.35.1293

    Article  CAS  Google Scholar 

  18. A.V. Kolobov, S.R. Elliott, J. Non-Cryst. Solids 189, 297 (1995). https://doi.org/10.1016/0022-3093(95)00245-6

    Article  CAS  Google Scholar 

  19. A.P. Torane, C.H. Bhosale, Mater. Res. Bull. 38, 847 (2003). https://doi.org/10.1016/S0025-5408(03)00030-8

    Article  CAS  Google Scholar 

  20. V. Kovanda, M. Vlček, H. Jain, J. Non-Crystalline Solids 88, 326–327 (2003). https://doi.org/10.1016/S0022-3093(03)00383-1

    Article  CAS  Google Scholar 

  21. A. Siokou, M. Kalyva, S.N. Yannopoulos, P. Němec, M. Frumar, J. Non-Cryst. Solids 352, 1520 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.12.021

    Article  CAS  Google Scholar 

  22. A. Dahshan, KA Aly, Phil. Mag. 88, 361 (2008). https://doi.org/10.1080/14786430701846214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFB0407500, 2017YFA0206101), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB44010200), National Natural Science Foundation of China (91964204, 61874129, 61874178), Science and Technology Council of Shanghai (20501120300, 18DZ2272800), Shanghai Sailing Program (19YF1456100), fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, and Genetic Engineering of Precious Metal Materials in Yunnan Province (I)-Construction and Application of Precious Metal Materials Professional Database (I) (202002AB080001-1).

Funding

This work was supported by the National Key Research and Development Program of China (2018YFB0407500, 2017YFA0206101), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB44010200), National Natural Science Foundation of China (91964204, 61874129, 61874178), Science and Technology Council of Shanghai (20501120300, 18DZ2272800), Shanghai Sailing Program (19YF1456100), fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, and Genetic Engineering of Precious Metal Materials in Yunnan Province (I)-Construction and Application of Precious Metal Materials Professional Database (I) (202002AB080001-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sannian Song or Zhitang Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Li, X., Wang, H. et al. Characteristic of As3Se4-based ovonic threshold switching device. J Mater Sci: Mater Electron 32, 7209–7214 (2021). https://doi.org/10.1007/s10854-021-05429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05429-0

Navigation