Skip to main content
Log in

Structural, morphological and optical properties of atomic layer deposited transition metal (Co, Ni or Fe)- doped ZnO layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the feasibility of atomic layer deposition (ALD) to prepare transition metal (Ni-, Co- or Fe-) doped ZnO thin films have been studied. The effects of dopant on the structure, morphology and optical properties of films have been investigated by a number of various techniques: X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ellipsometry, UV–Visible spectroscopy, Fourier transformed infrared spectroscopy (FTIR). The effect of substrate (glass, Si with different conductivity type and orientation) on the morphology of layers has also been studied. All layers have a hexagonal wurtzite structure but the preferential orientation of crystallites depends strongly on the dopant. In the case of Ni-doping, the results unambiguously reveal the incorporation of Ni in ZnO lattice. NiO clusters are also possibly formed in Ni:ZnO layers which can explain the observed significant decrease of their transparency. The investigations imply that under the doping scheme and technological conditions used in this study Co and Fe are incorporated only in small amounts in ZnO. Co-doping improves the transparency of ZnO films. The possibility to deposit thin homogeneous films of transition metal (Ni-, Co- or Fe-) doped ZnO by ALD method opens-up new frontiers for implementation of these materials in advanced electronic, magnetic or optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  2. T. Tynell, M. Karppinen, Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol. 29, 043001 (2014). https://doi.org/10.1088/0268-1242/29/4/043001

    Article  CAS  Google Scholar 

  3. Z.-Y. Quan, X.-H. Xu, X.-L. Li, Q. Feng, G.A. Gehring, Investigation of structure and magnetoresistance in Co/ZnO films. J. Appl. Phys. 108, 103912 (2010). https://doi.org/10.1063/1.3511752

    Article  CAS  Google Scholar 

  4. Z. Quan, X. Zhang, W. Liu, X. Li, K. Addison, G.A. Gehring, X. Xu, Enhanced room temperature magnetoresistance and spin injection from metallic cobalt in Co/ZnO and Co/ZnAlO Films. ACS Appl. Mater. Interfaces 5, 3607–3613 (2013). https://doi.org/10.1021/am303276b

    Article  CAS  Google Scholar 

  5. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000). https://doi.org/10.1126/science.287.5455.1019

    Article  CAS  Google Scholar 

  6. M.H.F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, U.V. Waghmare, First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys. Rev. Lett. 94, 187204 (2005). https://doi.org/10.1103/PhysRevLett.94.187204

    Article  CAS  Google Scholar 

  7. J.J. Beltrán, J.A. Osorio, C.A. Barrero, C.B. Hanna, A. Punnoose, Magnetic properties of Fe doped, Co doped, and Fe+Co co-doped ZnO. J. Appl. Phys. 113, 17C308 (2013). https://doi.org/10.1063/1.4799778

    Article  CAS  Google Scholar 

  8. X.J. Liu, X.Y. Zhu, C. Song, F. Zeng, F. Pan, Intrinsic and extrinsic origins of room temperature ferromagnetism in Ni-doped ZnO films. J. Phys. D: Appl. Phys. 42, 035004 (2009). https://doi.org/10.1088/0022-3727/42/3/035004

    Article  CAS  Google Scholar 

  9. A. Alsaad, Structural, electronic and magnetic properties of Fe Co, Mn-doped GaN and ZnO diluted magnetic semiconductors. Phys. B 440, 1–9 (2014). https://doi.org/10.1016/j.physb.2014.01.029

    Article  CAS  Google Scholar 

  10. P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes, Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 82, 1117–1119 (2003). https://doi.org/10.1063/1.1553997

    Article  CAS  Google Scholar 

  11. W. Gao, Z. Li, ZnO thin films produced by magnetron sputtering. Ceram. Int. 30, 1155–1159 (2004). https://doi.org/10.1016/j.ceramint.2003.12.197

    Article  CAS  Google Scholar 

  12. J. Singh, P.K. Srivastava, P.K. Siwach, H.K. Singh, R.S. Tiwari, O.N. Srivastava, PLD deposited ZnO films on different substrates and oxygen pressure: a study of surface morphology and optical properties. Sci. Adv. Mater. 4, 467–474 (2012). https://doi.org/10.1166/sam.2012.1303

    Article  CAS  Google Scholar 

  13. G. Wisz, I. Virt, P. Sagan, P. Potera, R. Yavorskyi, Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Res. Lett. 12, 253 (2017). https://doi.org/10.1186/s11671-017-2033-9

    Article  CAS  Google Scholar 

  14. L. Znaidi, Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng. B 174, 18–30 (2010). https://doi.org/10.1016/j.mseb.2010.07.001

    Article  CAS  Google Scholar 

  15. A.A.-G. Farrag, M.R. Balboul, Nano ZnO thin films synthesis by sol–gel spin coating method as a transparent layer for solar cell applications. J. Sol-Gel. Sci. Technol. 1, 269–279 (2016). https://doi.org/10.1007/s10971-016-4277-8

    Article  CAS  Google Scholar 

  16. R. Elilarassi, G. Chandrasekaran, Structural, optical and magnetic properties of nanoparticles of ZnO:Ni—DMS prepared by sol–gel method. Mater. Chem. Phys. 123, 450–455 (2010). https://doi.org/10.1016/j.matchemphys.2010.04.039

    Article  CAS  Google Scholar 

  17. R. Bairy, P. Shankaragouda, S.R. Maidur, H. Vijeth, M.S. Murari, U. Bhat, The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications. RSC Adv. 9, 22302–22312 (2019). https://doi.org/10.1039/C9RA03006A

    Article  CAS  Google Scholar 

  18. T. Srinivasulu, K. Saritha, K.T.R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Modern Electr. Mater. 3(2), 76–85 (2017). https://doi.org/10.1016/j.moem.2017.07.001

    Article  Google Scholar 

  19. S. Yılmaz, E. McGlynn, E. Bacaksız, J. Cullen, R.K. Chellappan, Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method. Chem. Phys. Lett. 525–526, 72–76 (2012). https://doi.org/10.1016/j.cplett.2012.01.003

    Article  CAS  Google Scholar 

  20. E. Guziewicz, M. Godlewski, T. Krajewski, Ł Wachnicki, A. Szczepanik, K. Kopalko, A. Wójcik-Głodowska, E. Przeździecka, W. Paszkowicz, E. Łusakowska, P. Kruszewski, N. Huby, G. Tallarida, S. Ferrari, ZnO grown by atomic layer deposition: a material for transparent electronics and organic heterojunctions. J. Appl. Phys. 105, 122413 (2009). https://doi.org/10.1063/1.3133803

    Article  CAS  Google Scholar 

  21. Y.C. Su, C.C. Chiou, V. Marinova, S.H. Lin, N. Bozhinov, B. Blagoev, T. Babeva, K.Y. Hsu, D.Z. Dimitrov, Atomic layer deposition prepared Al-doped ZnO for liquid crystal displays applications. Opt. Quant. Electron. 50, 205 (2018). https://doi.org/10.1007/s11082-018-1469-1

    Article  CAS  Google Scholar 

  22. B.S. Blagoev, M. Aleksandrova, P. Terziyska, P. Tzvetkov, D. Kovacheva, G. Kolev, V. Mehandzhiev, K. Denishev, D. Dimitrov, Investigation of the structural, optical and piezoelectric properties of ALD ZnO films on PEN substrates. J. Phys.: Conf. Ser. 992, 012027 (2018). https://doi.org/10.1088/1742-6596/992/1/012027

    Article  CAS  Google Scholar 

  23. T. Nguyen, N. Adjeroud, M. Guennou, J. Guillot, Y. Fleming, A.-M. Papon, D. Arl, K. Menguelti, R. Joly, N. Gambacorti, J. Polesel-Maris, Controlling electrical and optical properties of zinc oxide thin films grown by thermal atomic layer deposition with oxygen gas. Results Mater. 6, 100088 (2020). https://doi.org/10.1016/j.rinma.2020.100088

    Article  Google Scholar 

  24. I.A. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, A. Wójcik-Głodowska, M. Godlewski, P. Dłużewski, E. Łusakowska, W. Paszkowicz, Structural and optical properties of low-temperature ZnO films grown by atomic layer deposition with diethylzinc and water precursors. J. Cryst. Growth 311, 1096–1101 (2009). https://doi.org/10.1016/j.jcrysgro.2008.11.086

    Article  CAS  Google Scholar 

  25. R. Huang, S. Ye, K. Sun, K.S. Kiang, C.H.K. de Groot, Fermi level tuning of ZnO films through supercycled atomic layer deposition. Nanoscale Res. Lett. 12, 541 (2017). https://doi.org/10.1186/s11671-017-2308-1

    Article  CAS  Google Scholar 

  26. J. Pilz, A. Perrotta, P. Christian, M. Tazreiter, R. Resel, G. Leising, T. Griesser, A.M. Coclite, Tuning of material properties of ZnO thin films grown by plasma-enhanced atomic layer deposition at room temperature. J. Vac. Sci. Technol. A 36, 01A109 (2017). https://doi.org/10.1116/1.5003334

    Article  CAS  Google Scholar 

  27. C.-H. Zhai, R.-J. Zhang, X. Chen, Y.-X. Zheng, S.-Y. Wang, J. Liu, N. Dai, L.-Y. Chen, Effects of Al doping on the properties of ZnO thin films deposited by atomic layer deposition. Nanoscale Res. Lett. 11, 407 (2016). https://doi.org/10.1186/s11671-016-1625-0

    Article  CAS  Google Scholar 

  28. B.-S. Ko, S.-J. Lee, D.-H. Kim, D.-K. Hwang, Effects of pretreatment on Al-doped ZnO thin films grown by atomic layer deposition. J. Nanosci. Nanotechnol. 15, 2432 (2015). https://doi.org/10.1166/jnn.2015.10257

    Article  CAS  Google Scholar 

  29. M. Li, X. Qian, A.-D. Li, Y.-Q. Cao, H.-F. Zhai, D. Wu, A comparative study of growth and properties of atomic layer deposited transparent conductive oxide of Al doped ZnO films from different Al precursors. Thin Solid Films 646, 126 (2018). https://doi.org/10.1016/j.tsf.2017.11.039

    Article  CAS  Google Scholar 

  30. Z. Gao, P. Banerjee, Review article: atomic layer deposition of doped ZnO films. J. Vac. Sci. Technol. A 37, 050802 (2019). https://doi.org/10.1116/1.5112777

    Article  CAS  Google Scholar 

  31. M. Sawicki, E. Guziewicz, M.I. Łukasiewicz, O. Proselkov, I.A. Kowalik, W. Lisowski, P. Dluzewski, A. Wittlin, M. Jaworski, A. Wolska, W. Paszkowicz, R. Jakiela, B.S. Witkowski, L. Wachnicki, M.T. Klepka, F.J. Luque, D. Arvanitis, J.W. Sobczak, M. Krawczyk, A. Jablonski, W. Stefanowicz, D. Sztenkiel, M. Godlewski, T. Dietl, Homogeneous and heterogeneous magnetism in (Zn, Co)O: from a random antiferromagnet to a dipolar superferromagnet by changing the growth temperature. Phys. Rev. B. 88, 085204 (2013)

    Article  Google Scholar 

  32. M.I. Łukasiewicz, B. Witkowski, M. Godlewski, E. Guziewicz, M. Sawicki, W. Paszkowicz, R. Jakieła, T.A. Krajewski, G. Łuka, Effects related to deposition temperature of ZnCoO films grown by atomic layer deposition—uniformity of Co distribution, structural, optical, electrical and magnetic properties. Phys. Status Solidi B 247, 1666 (2010). https://doi.org/10.1002/pssb.200983689

    Article  CAS  Google Scholar 

  33. A.B.F. Martinson, M.J. DeVries, J.A. Libera, S.T. Christensen, J.T. Hupp, M.J. Pellin, J.W. Elam, Atomic layer deposition of Fe2O3 using ferrocene and ozone. J. Phys. Chem. C 115, 4333–4339 (2011). https://doi.org/10.1021/jp110203x

    Article  CAS  Google Scholar 

  34. K. Tapily, D. Gu, H. Baumgart, G. Namkoong, D. Stegall, A.A. Elmustafa, Mechanical and structural characterization of atomic layer deposition-based ZnO films. Semicond. Sci. Technol. 26, 115005 (2011). https://doi.org/10.1088/0268-1242/26/11/115005

    Article  CAS  Google Scholar 

  35. E. Guziewicz, M. Godlewski, L. Wachnicki, T.A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J.W. Sobczak, A. Jablonski, ALD grown zinc oxide with controllable electrical properties. Semicond. Sci. Technol. 27, 074011 (2012). https://doi.org/10.1088/0268-1242/27/7/074011

    Article  CAS  Google Scholar 

  36. B. Huang, K. Cao, X. Liu, L. Qian, B. Shan, R. Chen, Tuning the morphology and composition of ultrathin cobalt oxide film via atomic layer deposition. RSC Adv. 5, 71816–71823 (2015). https://doi.org/10.1039/C5RA09782G

    Article  CAS  Google Scholar 

  37. M. Diskus, O. Nilsen, H. Fjellvag, Thin films of cobalt oxide deposited on high aspect ratio supports by atomic layer deposition. Chem. Vap. Depos. 17, 135–140 (2011). https://doi.org/10.1002/cvde.201006891

    Article  CAS  Google Scholar 

  38. G.S. Pawley, Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361 (1981)

    Article  CAS  Google Scholar 

  39. A.X.S. Bruker, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual (Bruker AXS, Karlsruhe, 2008).

    Google Scholar 

  40. CompleteEASE® Software Manual (Lincoln: J. A. Woollam Co.) USA ©2004–2014 J.A. Woollam Co

  41. B.S. Blagoev, D.Z. Dimitrov, V.B. Mehandzhiev, D. Kovacheva, P. Terziyska, J. Pavlic, K. Lovchinov, E. Mateev, J. Leclercq, P. Sveshtarov, Electron transport in Al-doped ZnO nanolayers obtained by atomic layer deposition. J. Phys.: Conf. Ser. 700, 012040 (2016). https://doi.org/10.1088/1742-6596/700/1/012040

    Article  CAS  Google Scholar 

  42. A. Perrotta, J. Pilz, A. Milella, A.M. Coclite, Opto-chemical control through thermal treatment of plasma enhanced atomic layer deposited ZnO: an in situ study. Appl. Surf. Sci. 483, 10–18 (2019). https://doi.org/10.1016/j.apsusc.2019.03.122

    Article  CAS  Google Scholar 

  43. K. Jeyasubramanian, R.V. William, P. Thiruramanathan, G.S. Hikku, M. Vimal Kumar, B. Ashima, P. Veluswamy, H. Ikeda, Dielectric and magnetic properties of nanoporous nickel doped zinc oxide for spintronic applications. J. Magn. Magn. Mater. 485, 27–35 (2019). https://doi.org/10.1016/j.jmmm.2019.04.032

    Article  CAS  Google Scholar 

  44. R. Saravanan, K. Santhi, N. Sivakumar, V. Narayanan, A. Stephen, Synthesis and characterization of ZnO and Ni-doped ZnO nanorods by thermal decomposition method for spintronics application. Mater. Charact. 67, 10–16 (2012). https://doi.org/10.1016/j.matchar.2012.02.015

    Article  CAS  Google Scholar 

  45. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006). https://doi.org/10.1016/j.susc.2006.01.041

    Article  CAS  Google Scholar 

  46. S.-M. Park, T. Ikegami, K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513, 90–94 (2006). https://doi.org/10.1016/j.tsf.2006.01.051

    Article  CAS  Google Scholar 

  47. S.K. Saha, M.A. Rahman, M.R.H. Sarkar, M. Shahjahan, M.K.R. Khan, Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond. 36, 033004 (2015). https://doi.org/10.1088/1674-4926/36/3/033004

    Article  CAS  Google Scholar 

  48. J. Moma, J. Baloyi, Modified titanium dioxide for photocatalytic applications, in Photocatalysts—applications and attributes. ed. by S.B. Khan, K. Akhtar (IntechOpen, London, 2018)

    Google Scholar 

  49. M.Y. Ali, M.K.R. Khan, A.M.M.T. Karim, M.M. Rahman, M. Kamruzzaman, Effect of Ni doping on structure, morphology and opto-transport properties of spray pyrolised ZnO nano-fiber. Heliyon 6, e03588 (2020). https://doi.org/10.1016/j.heliyon.2020.e03588

    Article  Google Scholar 

  50. T. Jan, J. Iqbal, M. Ismail, Q. Mansoor, A. Mahmood, A. Ahmad, Eradication of multi-drug resistant bacteria by Ni doped ZnO nanorods: structural, Raman and optical characteristics. Appl. Surf. Sci. 308, 75–81 (2014). https://doi.org/10.1016/j.apsusc.2014.04.100

    Article  CAS  Google Scholar 

  51. M.M. Hassan, W. Khan, A. Azam, A.H. Naqvi, Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions. J. Lumin. 145, 160–166 (2014). https://doi.org/10.1016/j.jlumin.2013.06.024

    Article  CAS  Google Scholar 

  52. K.J. Kim, Y.R. Park, Spectroscopic ellipsometry study of optical transitions in Zn1−xCoxO alloys. Appl. Phys. Lett. 81, 1420–1422 (2002). https://doi.org/10.1063/1.1501765

    Article  CAS  Google Scholar 

  53. R. Baghdad, N. Lemée, G. Lamura, A. Zeinert, N. Hadj-Zoubir, M. Bousmaha, M.A. Bezzerrouk, H. Bouyanfif, B. Allouche, K. Zellama, Structural and magnetic properties of Co-doped ZnO thin films grown by ultrasonic spray pyrolysis method. Superlattices Microstruct. 104, 553–569 (2017). https://doi.org/10.1016/j.spmi.2016.11.069

    Article  CAS  Google Scholar 

  54. I.Y.Y. Bu, Sol–gel production of ZnO: Co: effect of post-annealing temperature on its optoelectronic properties. Mater. Sci. Semicond. Proc. 41, 240–245 (2016). https://doi.org/10.1016/j.mssp.2015.09.007

    Article  CAS  Google Scholar 

  55. P. Ariyakkani, L. Suganya, B. Sundaresan, Investigation of the structural, optical and magnetic properties of Fe doped ZnO thin films coated on glass by sol-gel spin coating method. J. Alloys Compd. 695, 3467–3475 (2017). https://doi.org/10.1016/j.jallcom.2016.12.011

    Article  CAS  Google Scholar 

  56. L. Xu, X. Li, Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method. J. Cryst. Growth 312, 851–855 (2010)

    Article  CAS  Google Scholar 

  57. Z.R. Khan, M.S. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of ZnO thin films fabricated by sol-gel method. Mater. Sci. Appl. 2, 340–345 (2011). https://doi.org/10.4236/msa.2011.25044

    Article  CAS  Google Scholar 

  58. N. Bhakta, P.K. Chakrabarti, Defect induced room temperature ferromagnetism and optical properties of (Co, Y) co-doped ZnO nanoparticles. J. Magn. Magn. Mater. 485, 419–426 (2019). https://doi.org/10.1016/j.jmmm.2019.03.106

    Article  CAS  Google Scholar 

  59. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectron. Eng. 89, 129–132 (2012). https://doi.org/10.1016/j.mee.2011.03.149

    Article  CAS  Google Scholar 

  60. K. Raja, P.S. Ramesh, D. Geetha, Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 183–188 (2014). https://doi.org/10.1016/j.saa.2014.03.047

    Article  CAS  Google Scholar 

  61. A. Kalam, A.S. Al-Shihri, A.G. Al-Sehemi, N.S. Awwad, G. Du, T. Ahmad, Effect of pH on solvothermal synthesis of β-Ni(OH)2 and NiO nano-architectures: surface area studies, optical properties and adsorption studies. Superlattices Microstruct. 55, 83–97 (2013). https://doi.org/10.1016/j.spmi.2012.11.024

    Article  CAS  Google Scholar 

  62. L.-N. Tong, T. Cheng, H.-B. Han, J.-L. Hu, X.-M. He, Y. Tong, C.M. Schneider, Photoluminescence studies on structural defects and room temperature ferromagnetism in Ni and Ni–H doped ZnO nanoparticles. J. Appl. Phys. 108, 023906 (2010). https://doi.org/10.1063/1.3460644

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Bulgarian National Scientific Fund, Project KP-06-H28/9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albena Paskaleva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paskaleva, A., Blagoev, B.S., Terziyska, P.T. et al. Structural, morphological and optical properties of atomic layer deposited transition metal (Co, Ni or Fe)- doped ZnO layers. J Mater Sci: Mater Electron 32, 7162–7175 (2021). https://doi.org/10.1007/s10854-021-05425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05425-4

Navigation