Skip to main content
Log in

Non-enzymatic sensing of glucose with high specificity and sensitivity based on high surface area mesoporous BiZnSbV-G-SiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is profoundly appealing to build a common enzyme-free sensor for detection of glucose. We effectively synthesized a uniform and mesoporous BiZnSbV-G-SiO2 (BZSVGS) quaternary nanocomposite by electrodeposition on a Ni foam substrate. This BiZnSbV-G-SiO2@NF composite terminal has been used as an electrocatalyst for coordinated oxidation of glucose, in this manner acting as a high-performance non-enzymatic glucose sensor. Coordinated electrochemical estimation with the as-arranged anodes in PBS and urea showed that the BiZnSbV-G-SiO2 nanocomposite has a great electrocatalytic movement toward glucose oxidation in a neutral medium and a wide straight reaction from 0.06 to 0.1 μmol/L, a low detection constraint of 0.06 μmol/L (S/N = 3) at a low connected potential of + 0.20 V vs Ag/AgCl. This ponder moreover highlights the effect of diminishing anion electronegativity on upgrading the electrocatalytic proficiency by bringing down the potential required for glucose oxidation and long-term steadiness together with a brief reaction time of roughly 4 s highlights the promising execution of the BiZnSbV-G-SiO2@NF anode for non-enzymatic glucose detection with high accuracy and unwavering quality. Besides, it can be used for glucose location in human blood serum, promising its application toward assurance of glucose in genuine tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Rao, Z. Zhang, Z.H. Ge, X. Liu, P. Zou, X. Wang, Y. Wang, Enhanced amperometric sensing using a NiCo2O4/nitrogen-doped reduced graphene oxide/ionic liquid ternary composite for enzyme-free detection of glucose. New J. Chem. 41(9), 3667–3676 (2017)

    Article  CAS  Google Scholar 

  2. K.L. Wu, Y.M. Cai, B.B. Jiang, W.C. Cheong, X.W. Wei, W. Wang, N. Yu, Cu@ Ni core–shell nanoparticles/reduced graphene oxide nanocomposites for nonenzymatic glucose sensor. Rsc Advances 7(34), 21128–21135 (2017)

    Article  CAS  Google Scholar 

  3. N. Hui, J. Wang, Electrodeposited honeycomb-like cobalt nanostructures on graphene oxide doped polypyrrole nanocomposite for high performance enzymeless glucose sensing. J. Electroanal. Chem. 798, 9–16 (2017)

    Article  CAS  Google Scholar 

  4. B. Xue, K. Li, L. Feng, J. Lu, L. Zhang, Graphene wrapped porous Co3O4/NiCo2O4 double shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochimica Acta 239, 36–44 (2017)

    Article  CAS  Google Scholar 

  5. S. Ci, T. Huang, Z. Wen, S. Cui, S. Mao, D.A. Steeber, J. Chen, Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosensors and Bioelectronics 54, 251–257 (2014)

    Article  CAS  Google Scholar 

  6. A. Sun, J. Zheng, Q. Sheng, A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step co-electrodeposition in ionic liquids. Electrochim. Acta 65, 64–69 (2012)

    Article  CAS  Google Scholar 

  7. A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chemical reviews 108(7), 2482–2505 (2008)

    Article  CAS  Google Scholar 

  8. H. Susanto, A.M. H.Samsudin, N. Rokhati, I.N. Widiasa, Immobilization of glucose oxidase on chitosan-based porous composite membranes and their potential use in biosensors. Enzym. Microb. Technol. 52(6–7), 386–392 (2013)

    Article  CAS  Google Scholar 

  9. K.K. Naik, A. Gangan, B. Chakraborty, S.K. Nayak, C.S. Rout, Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4–Pd nanosheets: experimental and DFT investigations. ACS Appl. Mater. Interfaces. 9(28), 23894–23903 (2017)

    Article  CAS  Google Scholar 

  10. G. Dryhurst, K. Niki, Redox Chemistry and Interfacial Behavior of Biological Molecules (Springer, New York, pp 201–222) (2012)

  11. F.P. Van der Zee, F.J. Cervantes, Impact and application of electron shuttles on the redox (bio) transformation of contaminants: a review. Biotechnol. Adv. 27(3), 256–277 (2009)

    Article  Google Scholar 

  12. X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chemical reviews 115(21), 11941–11966 (2015)

    Article  CAS  Google Scholar 

  13. J.L. Qi, X. Wang, J.H. Lin, F. Zhang, J.C. Feng, W.D. Fei, Vertically oriented few-layer graphene-nanocup hybrid structured electrodes for high-performance supercapacitors. Journal of Materials Chemistry A 3(23), 12396–12403 (2015)

    Article  CAS  Google Scholar 

  14. H. Gao, Y. Cao, Y. Chen, Z. Liu, M. Guo, S. Ding, J. Tu, J. Qi, Ultrathin NiFe-layered double hydroxide decorated NiCo2O4 arrays with enhanced performance for supercapacitors. Appl. Surf. Sci. 465, 929–936 (2019)

    Article  CAS  Google Scholar 

  15. F. Tehrani, B. Bavarian, Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Scientific reports 6(1), 1–10 (2016)

    Article  Google Scholar 

  16. W.C. Oh, F.J. Zhang, Preparation and characterization of graphene oxide reduced from a mild chemical method. Asian J. Chem. 23(2), 875–878 (2011)

    CAS  Google Scholar 

  17. X. Huang et al., Graphene-based materials: synthesis, characterization, properties and applications. Small 7, 1876–1902 (2011)

    Article  CAS  Google Scholar 

  18. C.E.F. Amaral, B. Wolf, Current development in non-invasive glucose monitoring. Med. Eng. Phys. 30, 541–549 (2008)

    Article  Google Scholar 

  19. Q.Y. He, S.X. Wu, Z.Y. Yin, H. Zhang, Graphene-based electronic sensors. Chem. Sci. 3, 1764–1772 (2012)

    Article  CAS  Google Scholar 

  20. F. Yan, M. Zhang, J. Li, Solution-Gated Graphene Transistors for Chemical and Biological Sensors. Adv. Healthcare Mater. 3, 313–331 (2014)

    Article  CAS  Google Scholar 

  21. Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH Protein Adsorption. Nano Lett. 9, 3318–3322 (2009)

    Article  CAS  Google Scholar 

  22. H.G. Sudibya, Q. He, H. Zhang, P. Chen, Electrical Detection of Metal Ions Using Field-Effect Transistors Based on Micropatterned Reduced Graphene Oxide Films. ACS Nano 5, 1990–1994 (2011)

    Article  CAS  Google Scholar 

  23. R.X. He et al., Solution-Gated Graphene Field Effect Transistors Integrated in Microfluidic Systems and Used for Flow Velocity Detection. Nano Lett. 12, 1404–1409 (2012)

    Article  CAS  Google Scholar 

  24. Y.X. Huang et al., Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2, 1485–1488 (2010)

    Article  CAS  Google Scholar 

  25. V. Neburchilov, H. Wang, J.J. Martin, W. Qu, A review on air cathodes for zinc–air fuel cells. J. Power Sources 195(5), 1271–1291 (2010)

    Article  CAS  Google Scholar 

  26. P.K. Kannan, C.S. Rout, High performance non-enzymatic glucose sensor based on one-step electrodeposited nickel sulfide. Chemistry 21(26), 9355–9359 (2015)

    Article  CAS  Google Scholar 

  27. B.G. Amin, J. Masud, M. Nath, Facile one-pot synthesis of NiCo2Se4-rGO on Ni foam for high performance hybrid supercapacitors. RSC Advances 9(65), 37939–37946 (2019)

    Article  CAS  Google Scholar 

  28. A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Func. Mater. 26(26), 4661–4672 (2016)

    Article  CAS  Google Scholar 

  29. D. Liu, Q. Lu, Y. Luo, X. Sun., A.M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 7(37), 15122–15126 (2015)

    Article  CAS  Google Scholar 

  30. Q. Liu, J. Jin, J. Zhang, NiCo2S4 @ graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 5(11), 5002–5008 (2013)

    Article  CAS  Google Scholar 

  31. B.G. Amin, J. Masud, M. Nath, A non-enzymatic glucose sensor based on a CoNi2Se4/rGO nanocomposite with ultrahigh sensitivity at low working potential. Journal of Materials Chemistry B 7(14), 2338–2348 (2019)

    Article  CAS  Google Scholar 

  32. P. Sun, T. Huang, Z. Chen, L. Tian, H. Huang, N. Huang, S. Zhou, M. Long, Y. Sun, X. Sun, Solution processed NixSy films: composition, morphology and crystallinity tuning via Ni/S-ratio-control and application in dye-sensitized solar cells. Electrochim. Acta 246, 285–293 (2017)

    Article  CAS  Google Scholar 

  33. J.Y. Lin, S.W. Chou, Highly transparent NiCo2S4 thin film as an effective catalyst toward triiodide reduction in dye-sensitized solar cells. Electrochem. Commun. 37, 11–14 (2013)

    Article  CAS  Google Scholar 

  34. R. Zou, Z. Zhang, M.F. Yuen, M. Sun, J. Hu, C.S. Lee, W. Zhang, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater. 7(6), 195–195 (2015)

    Article  Google Scholar 

  35. Q. Wang, L. Jiao, Y. Han, H. Du, W. Peng, Q. Huan, D. Song, Y. Si, Y. Wang, H. Yuan, CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J. Phys. Chem. C 115(16), 8300–8304 (2011)

    Article  CAS  Google Scholar 

  36. C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Evaporation-induced self-assembly: nanostructures made easy. Advanced materials 11(7), 579–585 (1999)

    Article  CAS  Google Scholar 

  37. G. Li, H. Huo, C. Xu, Ni0.31Co0.69S2 nanoparticles uniformly anchored on a porous reduced graphene oxide framework for a high-performance non-enzymatic glucose sensor. Journal of Materials Chemistry A 3(9), 4922–4930 (2015)

    Article  CAS  Google Scholar 

  38. Y. Zhou, H. Zheng, X. Chen, L. Zhang, K. Wang, J. Guo, Z. Huang, B. Zhang, W. Huang, K. Jin, D. Tonghai, The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature, 460(7253), 345

  39. J. Yang, Mater. Chem. A 2014(2), 3031–3037 (2009)

    Google Scholar 

  40. B. Zhan, C. Liu, H. Chen, H. Shi, L. Wang, P. Chen, W. Huang, X. Dong, Free-standing electrochemical electrode based on Ni (OH) 2/3D graphene foam for nonenzymatic glucose detection. Nanoscale 6(13), 7424–7429 (2014)

    Article  CAS  Google Scholar 

  41. Q.C. Pan, F.H. Zheng, X. Ou, C.H. Yang, X.H. Xiong, M.L. Liu, MoS2 encapsulated SnO2-SnS/C nanosheets as a high-performance anode material for lithium ion batteries. Chem. Eng. J. 316, 393–400 (2017)

    Article  CAS  Google Scholar 

  42. P. Dou, Z.Z. Cao, C. Wang, J. Zheng, X.H. Xu, Multilayer Zn-doped SnO2 hollow nanospheres encapsulated in covalently interconnected three-dimensional graphene foams for high performance lithium-ion batteries. Chem. Eng. J. 320, 405–415 (2017)

    Article  CAS  Google Scholar 

  43. M. Naushad, T. Ahamad, G. Sharma, A.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J. 300 306–316

  44. R. Schonfelder, M.H. Rummeli, W. Gruner, M. Loffler, J. Acker, V. Hoffmann, T. Gemming, B. Buchner, T. Pichler, Nanotechnology 18 (2007) 375601 (2016)

  45. A. Ganvir, S. Björklund, Y. Yao, S. Vadali, U. Klement, S. Joshi, A Facile Approach to Deposit Graphenaceous Composite Coatings by Suspension Plasma Spraying. Coatings 9(3), 171–179 (2019)

    Article  Google Scholar 

  46. K.N. Fatema, S. Sagadevan, Y. Liu, K.Y. Cho, C.H. Jung, W.C. Oh, New design of mesoporous SiO2 combined In2O3-graphene semiconductor nanocomposite for highly effective and selective gas detection. Journal of Materials Science 55(27), 13085–13101 (2020)

    Article  CAS  Google Scholar 

  47. S. Riazimehr, S. Kataria, R. Bornemann, P. Haring Bolívar, F.J.G. Ruiz, O. Engström, A. Godoy, M.C. Lemme, High photocurrent in gated graphene–silicon hybrid photodiodes. ACS photonics 4(6), 1506–1514 (2017)

    Article  CAS  Google Scholar 

  48. S. Liu, S. Kang, H. Wang, G. Wang, H. Zhao, W. Cai, Nanosheets-built flowerlike micro/nanostructured Bi2O2 and its highly efficient iodine removal performances. Chem. Eng. J. 289, 219–230 (2016)

    Article  Google Scholar 

  49. S. Yngman, S.R. McKibbin, J.V. Knutsson, A. Troian, F. Yang, M.H. Magnusson, L. Samuelson, R. Timm, A. Mikkelsen, Surface smoothing and native oxide suppression on Zn doped aerotaxy GaAs nanowires. J. Appl. Phys. 125(2), 025303 (2019)

    Article  Google Scholar 

  50. I. Martini, E. Chevallay, C. Heßler, V. Nistor, H. Neupert, V. Fedosseev, M. Taborelli, Surface characterization at CERN of photocathodes for photoinjector applications (No. CERN-ACC-2015-290, p. TUPJE040) (2015)

  51. P.P. Tomanin, P.V. Cherepanov, Q.A. Besford, A.J. Christofferson, A. Amodio, C.F. McConville, I. Yarovsky, F. Caruso, F. Cavalieri, Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH. ACS Appl. Mater. Interfaces 10(49), 42786–42795 (2018)

    Article  CAS  Google Scholar 

  52. D. Bruen, C. Delaney, L. Florea, D. Diamond, Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors 17, 1866 (2017)

    Google Scholar 

  53. K.N. Fatema, C.H. Jung, Y. Liu, S. Sagadevan, K.Y. Cho, W.C. Oh, New Design of Active Material Based on YInWO4–G-SiO2 for a Urea Sensor and High Performance for Nonenzymatic Electrical Sensitivity. ACS Biomaterials Science & Engineering 6(12), 6981–6994 (2020)

    Article  CAS  Google Scholar 

  54. N. Fatema, C.H. Jung, Y. Liu, S. Sagadevan, K.Y. Cho, W.C. Oh, Comparative Study of Electrochemical Biosensors Based on Highly Efficient Mesoporous ZrO2–Ag-G-SiO2 and In2O3–G-SiO2 for Rapid Recognition of E. coli O157:H7. ACS Omega 5, 36, 22719–22730 (2020)

    Article  CAS  Google Scholar 

  55. M.R.U.D. Biswas, W.C. Oh, A Review on Sensing and Functional Applications of Graphene-polymer Nanocomposites. Journal of Multifunctional Materials & Photoscience 9(1), 49–113 (2018)

    Google Scholar 

  56. M.R.U.D. Biswas, W.C. Oh, A Inclusive Review of Graphene-Polymer Nanocomposites: Research Position and Developments. Journal of Multifunctional Materials & Photoscience 8(1), 15–27 (2017)

    Google Scholar 

  57. M.R.U.D. Biswas, W.C. Oh, A Review on New Developments in 3D Graphene Based Polymer Composites. Journal of Multifunctional Materials & Photoscience 8(2), 199–230 (2017)

    Google Scholar 

  58. X. Cao, Y. Hong, N. Zhang, Q. Chen, J. Masud, M.A. Zaeem, M. Nath, Phase Exploration and identification of multinary transition-metal selenides as high-efficiency oxygen evolution electrocatalysts through combinatorial electrodeposition. ACS Catalysis 8(9), 8273–8289 (2018)

    Article  CAS  Google Scholar 

  59. C. Chen, M. Shi, M. Xue, Y. Hu, Synthesis of nickel (II) coordination polymers and conversion into porous NiO nanorods with excellent electrocatalytic performance for glucose detection. RSC Adv. 7(36), 22208–22214 (2017)

    Article  CAS  Google Scholar 

  60. F.J. García-García, P. Salazar, F. Yubero, A.R. González-Elipe, Non-enzymatic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 201, 38–44 (2016)

    Article  Google Scholar 

  61. K. Tian, N. Prestgard, A. Tiwari, A., A review of recent advances in nonenzymatic glucose sensors. Materials Science and Engineering: C 41, 100–118 (2014)

    Article  CAS  Google Scholar 

  62. U. De Silva, J. Masud, N. Zhang, Y. Hong, W.P.R. Liyanage, M. Asle Zaeem, M. Nath, J. Mater. Chem. A, 2018, 6, 7608–7622 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhu or Won-Chun Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatema, K., Zhu, L., Cho, K.Y. et al. Non-enzymatic sensing of glucose with high specificity and sensitivity based on high surface area mesoporous BiZnSbV-G-SiO2. J Mater Sci: Mater Electron 32, 8330–8346 (2021). https://doi.org/10.1007/s10854-021-05394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05394-8

Navigation