Skip to main content
Log in

AgNWs-a-TiOx: a scalable wire bar coated core–shell nanocomposite as transparent thin film electrode for flexible electronics applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible electronic devices entail highly transparent and conducting electrodes with excellent adherent and mechanically robust properties along with excellent bendability. Here, we report the development of transparent and conducting electrodes comprising silver nanowires (AgNWs) and amorphous-titanium oxide (a-TiOx) nanocomposite thin films. The AgNWs and a-TiOx nanocomposite thin films were deposited by a wire bar coating process, a scalable and high throughput procedure. PXRD analysis confirmed the crystalline and amorphous nature for AgNWs and TiOx thin film, respectively. FE-SEM and HRTEM analyses revealed the core–shell nature of the composite where AgNWs and a-TiOx acted as core and shell, respectively. Even after three-layer coating of AgNWs-a-TiOx nanocomposite thin films, high transparency (~ 77%) in the visible region (400–800 nm) and a sheet resistance of 23 Ω/sq were observed. Furthermore, tape peel off tests were conducted for AgNWs and AgNWs-a-TiOx nanocomposite, which displayed high adherence for the three-layer coated AgNWs-a-TiOx nanocomposite as compared with AgNWs alone. The formation of AgNWs-a-TiOx core–shell structure enhances the intra-particle binding and network formation of AgNWs. The preliminary studies highlight that the developed AgNWs-a-TiOx nanocomposite thin films have great potential as transparent electrodes for realizing scalable cost-effective flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Kim, Y. Won, K. Woo, C.H. Kim, J. Moon, ACS Nano 7, 1081–1091 (2013). https://doi.org/10.1021/nn305491x

    Article  CAS  Google Scholar 

  2. Y. Wang, P. Liu, H. Wang, B. Zeng, J. Wang, F. Chi, J. Mater. Sci. 54, 2343–2350 (2019). https://doi.org/10.1007/s10853-018-2986-9

    Article  CAS  Google Scholar 

  3. S. Chen, Y. Guan, Y. Li, X. Yan, H. Ni, L. Li, J. Mater. Chem. C 5, 2404–2414 (2017). https://doi.org/10.1039/C6TC05000J

    Article  CAS  Google Scholar 

  4. S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan, Y. Lee, J. Park, S.L. Craig, H. Ko, ACS Nano 11, 4346–4357 (2017). https://doi.org/10.1021/acsnano.7b01714

    Article  CAS  Google Scholar 

  5. C. Lee, Y. Oh, I.S. Yoon, S.H. Kim, B.K. Ju, J.M. Hong, Sci. Rep. 8, 2763 (2018). https://doi.org/10.1038/s41598-018-20368-3

    Article  CAS  Google Scholar 

  6. H. Gu, C. Guo, S. Zhang, L. Bi, T. Li, T. Sun, S. Liu, ACS Nano 12, 559–567 (2018). https://doi.org/10.1021/acsnano.7b07360

    Article  CAS  Google Scholar 

  7. D.J. Lee, Y. Oh, J.M. Hong, Y.W. Park, B.K. Ju, Sci. Rep. 8, 14170 (2018). https://doi.org/10.1038/s41598-018-32590-0

    Article  CAS  Google Scholar 

  8. B.H. Bae, S. Jun, M.S. Kwon, Y.W. Park, C.J. Han, S. Kim, B.K. Ju, Opt. Mater. 92, 87–94 (2019). https://doi.org/10.1016/j.optmat.2019.04.007

    Article  CAS  Google Scholar 

  9. H. Liu, V. Aurutin, N. Izyumskaya, U. Ozgur, H. Morkoc, Superlattices Microstruct. 48, 458–484 (2010). https://doi.org/10.1016/j.spmi.2010.08.011

    Article  CAS  Google Scholar 

  10. M. Loknac, R. Eggert, M. Redlinger, The availability of Indium: the present, medium term, and long term, National Renewable Laboratory (NREL), USA. https://www.nrel.gov/docs/fy16osti/62409.pdf

  11. S.C. Dixon, D.O. Scanlon, C.J. Carmalt, I.P. Parkin, J. Mater. Chem. C 4, 6946 (2016). https://doi.org/10.1039/C6TC01881E

    Article  CAS  Google Scholar 

  12. D.P. Tran, H. Lu, C.K. Lin, Coatings 8, 212 (2016). https://doi.org/10.3390/coatings8060212

    Article  CAS  Google Scholar 

  13. X. Shen, M. Yang, C. Zhang, Z. Qiao, H. Wang, C. Tang, Superlattices Microstruct. 123, 251–256 (2018). https://doi.org/10.1016/j.spmi.2018.09.001

    Article  CAS  Google Scholar 

  14. T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.P. Simonato, D. Bellet, Small 12, 6052–6075 (2016). https://doi.org/10.1002/smll.201602581

    Article  CAS  Google Scholar 

  15. S. Coskun, E.S. Ates, H.E. Unalan, Nanotechnology 24, 125202 (2013). https://doi.org/10.1088/0957-4484/24/12/125202

    Article  CAS  Google Scholar 

  16. B. Zheng, Q. Zhu, Y. Zhao, J. Mater. Sci. 54, 5802–5812 (2019). https://doi.org/10.1007/s10853-018-03235-4

    Article  CAS  Google Scholar 

  17. M.X. Jing, M. Li, C.Y. Chen, Z. Wang, X.Q. Shen, J. Mater. Sci. 50, 6437–6443 (2015). https://doi.org/10.1007/s10853-015-9198-3

    Article  CAS  Google Scholar 

  18. Y. Tao, D. Pan, Mater. Res. Express 6, 076430 (2019). https://doi.org/10.1088/2053-1591/ab17a4

    Article  CAS  Google Scholar 

  19. B.T. Liu, S.X. Huang, RSC Adv. 4, 59226–59232 (2014). https://doi.org/10.1039/C4RA11660G

    Article  CAS  Google Scholar 

  20. L. Miao, G. Liu, K. McEleney, J. Wang, J. Mater. Sci. 54, 10355–10370 (2019). https://doi.org/10.1007/s10853-019-03507-7

    Article  CAS  Google Scholar 

  21. S. Kim, S.Y. Kim, M.H. Chung, J. Kim, J.H. Kim, J. Mater. Chem. C3, 5859–5868 (2015). https://doi.org/10.1039/C5TC00801H

    Article  Google Scholar 

  22. P. Kumar, F. Shahzad, S.M. Hong, C.M. Koo, RSC Adv. 6, 101283–101287 (2016). https://doi.org/10.1039/C6RA18652A

    Article  CAS  Google Scholar 

  23. F. Alotaibi, T.T. Tuang, M.J. Nine, C.J. Coghlan, D. Losic, A.C.S. Appl, Nano Mater. 1, 2249–2260 (2018). https://doi.org/10.1021/acsanm.8b00255

    Article  CAS  Google Scholar 

  24. M.C. Han, H.W. He, B. Zhang, X.X. Wang, J. Zhang, M.H. You, S.Y. Yan, Y.Z. Long, Mater. Res. Express 4, 075043 (2017). https://doi.org/10.1088/2053-1591/aa7c13

    Article  CAS  Google Scholar 

  25. Y. Huang, Y. Tian, C. Hang, Y. Liu, S. Wang, M. Qi, H. Zhang, Q. Peng, A.C.S. Appl, Nano Mater. 2, 2456–2466 (2019). https://doi.org/10.1021/acsanm.9b00337

    Article  CAS  Google Scholar 

  26. X. Zhang, J. Wu, J. Wang, Q. Yang, B. Zhang, Z. Xie, A.C.S. Appl, Mater. Interfaces 8, 34630–34637 (2016). https://doi.org/10.1021/acsami.6b11978

    Article  CAS  Google Scholar 

  27. E. Lee, J. Ahn, H.C. Kwon, S. Ma, K. Kim, S. Yun, J. Moon, Adv. Energy Mater. 8, 1702182 (2018). https://doi.org/10.1002/aenm.201702182

    Article  CAS  Google Scholar 

  28. A. Kim, Y. Won, K. Woo, S. Jeong, J. Moon. Adv. Funct. Mater. 24, 2462–2471 (2014). https://doi.org/10.1002/adfm.201303518

    Article  CAS  Google Scholar 

  29. M. Singh, P. Prasher, J. Kim, Nano-Structured & Nano-Objects 16, 151–155 (2018). https://doi.org/10.1016/j.nanoso.2018.05.009

    Article  CAS  Google Scholar 

  30. M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.L. Peng, R. Zboril, R.S. Varma, Chem. Soc. Rev. 44, 7540–7590 (2015). https://doi.org/10.1039/C5CS00343A

    Article  CAS  Google Scholar 

  31. Y. Hou, Y. Liu, R. Gao, Q. Li, H. Guo, A. Goswami, R. Zboril, M.B. Gawande, X. Zou, ACS Catal. 7, 7038–7042 (2017). https://doi.org/10.1021/acscatal.7b02341

    Article  CAS  Google Scholar 

  32. A. Goswami, A.K. Rathi, C. Aparicio, O. Tomanec, M. Petr, R. Pocklanova, M.B. Gawande, R.S. Varma, R. Zboril, A.C.S. Appl, Mater. Interfaces 9, 2815–2824 (2017). https://doi.org/10.1021/acsami.6b13138

    Article  CAS  Google Scholar 

  33. A.K. Rathi, H. Kmentová, A. Naldoni, A. Goswami, M.B. Gawande, R.S. Varma, S. Kment, R. Zbořil, ACS Appl. Nano Mater. 1, 2526–2535 (2018). https://doi.org/10.1021/acsanm.8b00078

    Article  CAS  Google Scholar 

  34. V.C. Anitha, A. Goswami, H. Sopha, D. Nandan, M.B. Gawande, K. Cepe, S. Ng, R. Zboril, J.M. Macak, Appl. Mater. Today 10, 86–92 (2018). https://doi.org/10.1016/j.apmt.2017.12.006

    Article  Google Scholar 

  35. S. Panimalar, R. Uthrakumar, E. TamilSelvi, P. Gomathy, C. Inmozhi, K. Kaviyarasu, J. Kennedy, Surf. Interfaces 20, 100512 (2020). https://doi.org/10.1016/j.surfin.2020.100512

    Article  Google Scholar 

  36. K. Kaviyarasu, C. Maria Magdalane, D. Jayakumar, Y. Samson, A.K.H. Bashir, M. Maaza, D. Letsholathebe, A.H. Mahmoud, J. Kennedy, J. King Saud Uni. Sci. 32, 1516–1522 (2020). https://doi.org/10.1016/j.jksus.2019.12.006

    Article  Google Scholar 

  37. Y. Wang, L.T. Tseng, P.P. Murmu, N. Bao, J. Kennedy, M. Ionesc, J. Ding, K. Suzuki, S. Li, J. Yi, Mater. Des. 121, 77–84 (2017). https://doi.org/10.1016/j.matdes.2017.02.037

    Article  CAS  Google Scholar 

  38. K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, M. Malik, Sci. Rep. 6, 38064 (2016). https://doi.org/10.1038/srep38064

    Article  CAS  Google Scholar 

  39. M.C. Mbambo, S. Khamlich, T. Khamliche, M.K. Moodley, K. Kaviyarasu, I.G. Madiba, M.J. Madito, M. Khenfouch, J. Kennedy, M. Henini, E. Manikandan, M. Maaza, Sci. Rep. 10, 10982 (2020). https://doi.org/10.1038/s41598-020-67418-3

    Article  CAS  Google Scholar 

  40. J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, Adv. Mater. 24, 2874 (2012). https://doi.org/10.1002/adma.201200055

    Article  CAS  Google Scholar 

  41. W.J. Lee, W.T. Park, S. Park, S. Sung, Y.Y. Noh, M.H. Yoon, Adv. Mater. 27, 5043–5048 (2015). https://doi.org/10.1002/adma.201502239

    Article  CAS  Google Scholar 

  42. D.J. Kim, H.I. Shin, E.H. Ko, K.H. Kim, T.W. Kim, H.K. Kim, Sci. Rep. 6, 34322 (2016). https://doi.org/10.1038/srep34322

    Article  CAS  Google Scholar 

  43. S. Cho, K. Lee, A.J. Heeger, Adv. Mater. 21, 1941 (2009). https://doi.org/10.1002/adma.200803013

    Article  CAS  Google Scholar 

  44. P. Divya, S. Arulkumar, S. Parthiban, A. Goswami, T. Ahamad, M.B. Gawande, Molecules 25, 1683 (2020). https://doi.org/10.3390/molecules25071683

    Article  CAS  Google Scholar 

  45. S. Arulkumar, S. Parthiban, A. Goswami, R.S. Varma, M. Naushad, M.B. Gawande, Mater. Res. Express 6, 126427 (2019). https://doi.org/10.1088/2053-1591/ab5eed

    Article  CAS  Google Scholar 

  46. X. Xia, B. Yang, X. Zhang, C. Zhou, Mater. Res. Express 2, 075009 (2015). https://doi.org/10.1088/2053-1591/2/7/075009

    Article  CAS  Google Scholar 

  47. Z. Nengduo, Y. Xuesonga, G. Hao, RSC Adv. 6, 47552–47561 (2016). https://doi.org/10.1039/C6RA05448J

    Article  CAS  Google Scholar 

  48. M. Hannula, H. Ali-Löytty, K. Lahtonen, E. Sarlin, J. Saari, M. Valden, Chem. Mater. 30, 1199–1208 (2018). https://doi.org/10.1021/acs.chemmater.7b02938

    Article  CAS  Google Scholar 

  49. P. Ramasamy, D.M. Seo, S.H. Kim, J. Kim, J. Mater. Chem. 22, 11651–11657 (2012). https://doi.org/10.1039/C2JM00010E

    Article  CAS  Google Scholar 

  50. J.L.G. Fierro, M.A. Peña, L.G. Tejuca, J. Mater. Sci. 23, 1018–1023 (1988). https://doi.org/10.1007/BF01154005

    Article  CAS  Google Scholar 

  51. S.J. Yuan, F.J. Xu, S.O. Pehkonen, Y.P. Ting, E.T. Kang, K.G. Neoh, J. Electrochem. Soc. 155, C196–C210 (2008). https://doi.org/10.1149/1.2885073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology-Science and Engineering Research Board, Government of India for financial support under the early career research award (File No. ECR/2016/000785). The author (SMA) thanks to Researchers Supporting Project number (RSP-2020/29), King Saud University, Riyadh, Saudi Arabia. The author T. S. is thankful to PSG Son’s and Charities Fellowship for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parthiban.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulkumar, S., Senthilkumar, T., Parthiban, S. et al. AgNWs-a-TiOx: a scalable wire bar coated core–shell nanocomposite as transparent thin film electrode for flexible electronics applications. J Mater Sci: Mater Electron 32, 6454–6464 (2021). https://doi.org/10.1007/s10854-021-05362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05362-2

Navigation