Abstract
In this study, we report the time evaluation of work function measurements on ZnO microrods in Kelvin probe method under photoexcitation, called Surface Photovoltage (SPV). The SPV measurements are one of the most important techniques for characterizing both surface and bulk of the semiconductors. The ZnO microrods synthesized by hydrothermal method are highly crystalline with typical length of 50–100 µm and hexagonal cross section of about 2 µm. Upon drop-casting, most of the rods lie flat on the surface making the basal (002) plane vertical and the prismatic (101) and (100) plane on top. Thus, the SPV measurements are performed on these prismatic planes which are non-polar in nature. The SPV response of microrods has been studied for UV laser of photon energy 3.45 eV which is higher than that of the observed bandgap of 3.3 eV of ZnO microrods. The response is studied in varying oxygen ambience and temperatures. The average work function of the material at room temperature (25 °C) and ambient atmosphere is found to be 4.52 ± 0.3 eV. The work function was found to decrease with increasing temperature and upon photoexcitation. The photovoltage recovery time depicts that the presence of oxygen in atmosphere greatly accelerates the photocurrent recovery through trapping of photo-generated charge carriers by the surface states. The minority carrier diffusion length thus estimated from variable energy photoexcitation is found to be 160 nm.
This is a preview of subscription content, access via your institution.

source of 530 nm laser






Data availability
The data of the study are available on reasonable request to the communicating author.
References
A. Janotti, C.G. Van de Walle, Rep. Progress Phys. (2009). https://doi.org/10.1088/0034-4885/72/12/126501
K. Bandopadhyay, J. Mitra, Sci. Rep. 6, 28468 (2016). https://doi.org/10.1038/srep28468
A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.2053360
K. Bandopadhyay, J. Mitra, RSC Adv. 5, 23540 (2015). https://doi.org/10.1039/c5ra00355e
L. Liu, Z. Mei, A. Tang et al., Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevB.93.235305
D.M. Hofmann, A. Hofstaetter, F. Leiter et al., Phys. Rev. Lett. 88, 045504 (2002). https://doi.org/10.1103/PhysRevLett.88.045504
F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Phys. Rev. Lett. 99, 085502 (2007). https://doi.org/10.1103/PhysRevLett.99.085502
D.I. Son, B.W. Kwon, D.H. Park et al., Nat. Nanotechnol. 7, 465 (2012). https://doi.org/10.1038/nnano.2012.71
A.Z.C. Soci, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 7 (2007)
M.K.Y. Takahashi, A. Kondoh, H. Minoura, Y. Ohya, Jpn. Appl. Phys. 33, 6 (1994)
B.D. Boruah, Nanosc Adv. 1, 2059 (2019). https://doi.org/10.1039/c9na00130a
L. Ren, T. Tian, Y. Li, J. Huang, X. Zhao, ACS Appl Mater Interfaces 5, 5861 (2013). https://doi.org/10.1021/am401533w
Y.-S. Choi, J.-W. Kang, D.-K. Hwang, S.-J. Park, IEEE Trans. Electron Devices 57, 26 (2010). https://doi.org/10.1109/ted.2009.2033769
V.S. Bhati, S. Ranwa, S. Rajamani et al., ACS Appl Mater Interfaces 10, 11116 (2018). https://doi.org/10.1021/acsami.7b17877
C.Y.Q. Yu, W. Fu, M. Yuan, J. Guo, M. Li, S. Liu, G. Zou, H. Yang, J. Phys. Chem. C 113, 6 (2009)
M.-C.P.C.S. Lao, Q. Kuang, Y. Deng, A.K. Sood, D.L. Polla, Z.L. Wang, J. Am. Chem. Soc. 129, 2 (2007)
J. Dai, C. Xu, X. Xu et al., ACS Appl. Mater. Interfaces 5, 9344 (2013). https://doi.org/10.1021/am403609y
S. Liu, M.Y. Li, D. Su et al., ACS Appl. Mater. Interfaces 10, 32516 (2018). https://doi.org/10.1021/acsami.8b09442
C.L. Hsu, Y.H. Lin, L.K. Wang, T.J. Hsueh, S.P. Chang, S.J. Chang, ACS Appl. Mater. Interfaces 9, 14935 (2017). https://doi.org/10.1021/acsami.7b03216
R. Vidya, P. Ravindran, H. Fjellvåg et al., Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.83.045206
S. Suresh, K.M.B. Urs, A.T. Vasudevan, S. Sriram, V.B. Kamble, Physica Status Solidi (RRL) (2019). https://doi.org/10.1002/pssr.201800683
N. Srinatha, Y.S. No, V.B. Kamble et al., RSC Adv. 6, 9779 (2016). https://doi.org/10.1039/c5ra22795j
M.E. Swanwick, S.M. Pfaendler, A.I. Akinwande, A.J. Flewitt, Nanotechnology 23, 344009 (2012). https://doi.org/10.1088/0957-4484/23/34/344009
L. Kelvin, Lond. Edinb.Dublin Philos. Mag. J. Sci. 46, 82 (2009). https://doi.org/10.1080/14786449808621172
L. Kronik, Y. Shapira, Surf. Interface Anal. 31, 954 (2001). https://doi.org/10.1002/sia.1132
W.H.B.J. Bardeen, Bell Syst. Techn. J. 32, 42 (1952)
C.G.B. Garrett, W.H. Brattain, Phys. Rev. 99, 376 (1955). https://doi.org/10.1103/PhysRev.99.376
E.O. Johnson, J. Appl. Phys. 28, 1349 (1957). https://doi.org/10.1063/1.1722650
A.M. Goodman, J. Appl. Phys. 32, 2550 (1961). https://doi.org/10.1063/1.1728351
H.C. Gatos, J. Lagowski, J. Vacuum Sci. Technol. 10, 130 (1973). https://doi.org/10.1116/1.1317922
Y.S.L. Kronik, Surf. Sci. Rep. 37, 206 (1999)
H.L.A.G. Heiland, Nuovo Ciment 39, 11 (1977)
I.D. Baikie, K.O. van der Werf, H. Oerbekke, J. Broeze, A. van Silfhout, Rev. Sci. Instrum. 60, 930 (1989). https://doi.org/10.1063/1.1140346
O. Vilitis, M. Rutkis, J. Busenberg, D. Merkulov, Latv. J. Phys. Tech. Sci. 53, 48 (2016). https://doi.org/10.1515/lpts-2016-0013
NASARJD Arcy (1970) J. Phys. E 3: 4
O. Vilitis, M. Rutkis, J. Busenbergs, D. Merkulovs, Latv. J. Phys. Tech. Sci. 53, 57 (2016). https://doi.org/10.1515/lpts-2016-0045
Y. Ohno, Y. Tokumoto, I. Yonenaga, K. Fujii, T. Yao, J. Appl. Phys. 111, 78 (2012). https://doi.org/10.1063/1.4725426
T. Lim, G. Ico, K. Jung, K.N. Bozhilov, J. Nam, A.A. Martinez-Morales, CrystEngComm 20, 5688 (2018). https://doi.org/10.1039/c8ce00799c
D. Cavalcoli, A. Cavallini, Phys. Status Solidi C 7, 1293 (2010). https://doi.org/10.1002/pssc.200983124
D.K. Schroder, Measur. Sci. Technol. 12, 16 (2001)
ZHMN Akter, Hasan Zahid, MA Tonima (2015) International conference on materials, electronics & information engineering, ICMEIE-2015
A. Soni, K. Mulchandani, K.R. Mavani, J. Mater. Chem. C 8, 7837 (2020). https://doi.org/10.1039/d0tc00990c
Z. Ke, Z. Yang, M. Wang, M. Cao, Z. Sun, J. Shao, Sens. Actuators, A 253, 173 (2017). https://doi.org/10.1016/j.sna.2016.07.026
S.P. Ghosh, K.C. Das, N. Tripathy et al., IOP Conf. Ser. (2016). https://doi.org/10.1088/1757-899x/115/1/012035
M.H. Mamat, Z. Khusaimi, M.M. Zahidi et al., Jpn. J. Appl. Phys. 50, 10 (2011). https://doi.org/10.1143/jjap.50.06gh04
V.B. Kamble, S.V. Bhat, A.M. Umarji, J. Appl. Phys. 113, 120 (2013). https://doi.org/10.1063/1.4812382
D.T. Xie, L. Zhu, T. Li, Xu. Yn, Mater. Chem. Phys. 70, 4 (2001)
Acknowledgements
VBK would like to thank the Department of Science and Technology, Government of India, Nano technology mission for the grant DST/NM/NT/2018/124, which supported this research work. The authors also like to thank Dr Joy Mitra for the fruitful discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Urs, K.M.B., Kamble, V. Surface photovoltage response of zinc oxide microrods on prismatic planes: effect of UV, temperature and oxygen ambience. J Mater Sci: Mater Electron 32, 6414–6424 (2021). https://doi.org/10.1007/s10854-021-05359-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-021-05359-x