Skip to main content

Advertisement

Log in

Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 23 July 2021

This article has been updated

Abstract

RF magnetron sputtering was used to grow silicon nitride (Si3N4) thin film on GaAs substrate to form metal–oxide–semiconductor (MOS) capacitor. Complex dielectric permittivity (ε*), complex electric modulus (M*) and complex electrical conductivity (σ*) of the prepared Au/Si3N4/p-GaAs (MOS) capacitor were studied in detail. These parameters were calculated using admittance measurements performed in the range of 150 K-350 K and 50 kHz-1 MHz. It is found that the dielectric constant (ε′) and dielectric loss (ε″) value decrease with increasing frequency. However, as the temperature increases, the ε′ and ε″ increased. Ac conductivity (σac) was increased with increasing both temperature and frequency. The activation energy (Ea) was determined by Arrhenius equation. Besides, the frequency dependence of σac was analyzed by Jonscher’s universal power law (σac = Aωs). Thus, the value of the frequency exponent (s) were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982).

    Google Scholar 

  2. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007).

    Google Scholar 

  3. D.A. Neamen, Semiconductor Physics and Devices, 4th edn. (McGraw-Hill, New York, 2012).

    Google Scholar 

  4. H. Bentarzi, Transport in Metal-Oxide-Semiconductor Structures (Springer-Verlag, Berlin Heidelberg, 2011).

    Book  Google Scholar 

  5. C.P. Symth, Dielectric Behaviour and Structure (McGraw-Hill, New York, 1955).

    Google Scholar 

  6. A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980).

    Google Scholar 

  7. M. Popescu, I. Bunget, Physics of Solid Dielectrics (Elsevier, Amsterdam, 1984).

    Google Scholar 

  8. S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials, 2nd edn. (Springer, Berlin, 2017).

    Book  Google Scholar 

  9. X. Meng, Y.-Chul Byun, H.S. Kim, J.S. Lee, A.T. Lucero, L. Cheng, J. Kim, Materials. 9, 1007 (2016)

  10. Z. Krstic, V.D. Krstic, J. Mater. Sci. 47, 535–552 (2012)

    Article  CAS  Google Scholar 

  11. K. Jhansirani, R.S. Dubey, M.A. More, S. Singh, Results Phys. 6, 1059–1063 (2016)

    Article  Google Scholar 

  12. D. Dergez, M. Schneider, A. Bittner, U. Schmid, Thin Solid Films 589, 227–232 (2015)

    Article  CAS  Google Scholar 

  13. A. Buyukbas-Ulusan, A. Tataroglu, J. Mater. Sci.: Mater. Electron. 31, 9888–9893 (2020)

    CAS  Google Scholar 

  14. A. Tataroğlu, Ş Altındal, Microelectron. Eng. 85, 1866–1871 (2008)

    Article  CAS  Google Scholar 

  15. I.S. Yahia, A.A.M. Farag, F. Yakuphanoğlu, W.A. Farooq, Synth. Metals 161, 881–887 (2011)

    Article  CAS  Google Scholar 

  16. S. Aydogan, M. Saglam, A. Türüt, Polymer 46, 563–568 (2005)

    Article  CAS  Google Scholar 

  17. K.C. Kao, Dielectric Phenomena in Solids (Elsevier, London, 2004).

    Google Scholar 

  18. G.G. Raju, Dielectrics in Electric Fields, 2nd edn. (CRC Press, Boca Raton, 2017).

    Google Scholar 

  19. T. Ataseven, A. Tataroglu, Chin. Phys. B 22, 117310 (2013)

    Article  CAS  Google Scholar 

  20. A. Tataroğlu, Ş Altındal, M.M. Bülbül, Microelectron. Eng. 81, 140–149 (2005)

    Article  CAS  Google Scholar 

  21. A. Buyukbas, A. Tataroglu, J. Nanoelectron. Optoelectron. 10, 675–679 (2015)

    Article  CAS  Google Scholar 

  22. T. Mondal, S. Das, T.P. Sinha, P.M. Sarun, Mater Sci-Poland 36, 112–122 (2018)

    Article  CAS  Google Scholar 

  23. Z. Imran, M.A. Rafiq, M. Ahmad, K. Rasool, S.S. Batool, M.M. Hasan, AIP Adv. 3, 032146 (2013)

    Article  CAS  Google Scholar 

  24. H.H. Güllü, D.E. Yıldız, J. Mater. Sci.: Mater. Electron. 31, 8705–8717 (2020)

    Google Scholar 

  25. M.M. El-Nahass, H.A.M. Ali, Solid State Commun. 152, 1084–1088 (2012)

    Article  CAS  Google Scholar 

  26. Ch. Rayssi, S. El.Kossi, J. Dhahri, K. Khirouni. , RSC Adv. 8, 17139–17150 (2018)

    Article  CAS  Google Scholar 

  27. T. Badapanda, R.K. Harichandan, S.S. Nayak, A. Mishra, S. Anwar, Process. Appl. Ceram. 8, 145–153 (2014)

    Article  Google Scholar 

  28. M.B. Hossen, A.K.M. Akther Hossain, J. Adv. Ceram. 4, 217–225 (2015)

    Article  CAS  Google Scholar 

  29. N.S. Prabhu, K.R. Vighnesh, S. Bhardwaj, A.M. Awasthi, G. Lakshminarayana, S.D. Kamath, J. Alloys Compd. 832, 154996 (2020)

    Article  CAS  Google Scholar 

  30. S. Alptekin, A. Tataroğlu, Ş Altındal, J. Mater. Sci.: Mater. Electron. 30, 6853–6859 (2019)

    CAS  Google Scholar 

  31. R.V. Barde, K.R. Nemade, S.A. Waghuley, J. Asian Ceram. Soc. 3, 116–122 (2015)

    Article  Google Scholar 

  32. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Int. J. Electrochem. Sci. 3, 597–608 (2008)

    CAS  Google Scholar 

  33. D. Maurya, J. Kumar, Shripal. J. Phys. Chem. Solids 66, 1614–1620 (2005)

    Article  CAS  Google Scholar 

  34. A.K. Dubey, P. Singh, S. Singh, D. Kumar, O. Parkash, J. Alloys Compd. 509, 3899–3906 (2011)

    Article  CAS  Google Scholar 

  35. T. Zangina, J. Hassan, K. Amin Matori, R. Syahidah Azis, U. Ahmadu, A. See, Results Phys. 6, 719–725 (2016)

    Article  Google Scholar 

  36. T. Larbi, B. Ouni, A. Boukachem, K. Boubaker, M. Amlouk, Mater. Sci. Sem. Process. 22, 50–58 (2014)

    Article  CAS  Google Scholar 

  37. H. Tecimer, J. Mater. Sci.: Mater. Electron. 29, 20141–20145 (2018)

    CAS  Google Scholar 

  38. M. Marín-Genescà, J. García-Amorós, R. Mujal-Rosas, L. Massagués, X. Colom, Polymers 12, 1075 (2020)

    Article  CAS  Google Scholar 

  39. S.I. Qashou, A.A.A. Darwish, M. Rashad, Z. Khattari, Phys. B 525, 159–163 (2017)

    Article  CAS  Google Scholar 

  40. A.K. Roy, K. Prasad, A. Prasad, Process. Appl. Ceram. 7, 81–91 (2013)

    Article  CAS  Google Scholar 

  41. A. Rahal, S.M. Borchani, K. Guidara, M. Megdiche, R. Soc, Open Sci. 5, 171472 (2018)

    CAS  Google Scholar 

  42. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996).

    Google Scholar 

  43. S. Mathlouthi, A. Oueslati, B. Louati, Indian J. Phys. 93, 603–610 (2019)

    Article  CAS  Google Scholar 

  44. S. Maity, D. Bhattacharya, S.K. Ray, J. Phys. D: Appl. Phys. 44, 095403 (2011)

    Article  CAS  Google Scholar 

  45. N. Karaoglan, H. Uslu Tecimer, Ş Altındal, C. Bindal, J. Mater. Sci.: Mater Electron. 30, 14224–14232 (2019)

    CAS  Google Scholar 

  46. E. Ah Dhahri, E.K.H. Dhahri, RSC Adv. 8, 9103–9111 (2018)

    Article  Google Scholar 

  47. Y. Ben Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Appl. Phys. A 120, 1537–1543 (2015)

    Article  CAS  Google Scholar 

  48. M.D. Migahed, M. Ishra, T. Fahmy, A. Barakat, J. Phys. Chem. Solids 65, 1121–1125 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2019-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adem Tataroğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türkay, S., Tataroğlu, A. Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor. J Mater Sci: Mater Electron 32, 11418–11425 (2021). https://doi.org/10.1007/s10854-021-05349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05349-z

Navigation