Skip to main content
Log in

Effect of Polaron formation in conduction and dielectric behavior in La0.7Sr0.25K0.05MnO3 oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to analyze the dielectric properties of La0.7Sr0.25K0.05MnO3 (LSKM) using impedance spectroscopy over the frequency range of 100 Hz to 1 MHz at different temperatures from 260 to 380 K. In fact, the dielectric analyses of the sample showed two relaxation processes at different relaxation times related to the effect of microstructural inhomogeneities and the contribution of grain and gain boundaries. However, Ac conductivity behavior reveals a metal–semiconductor phase transition at a specific temperature TM-S = 260 K and showed an important impact of the electron–lattice interaction in polaron formation. Also, the conductivity curve is analyzed by Johnscher’s universal power law and the variation of the exponent ‘n’ with temperature suggests the domination of small polaron hopping (SPH) model governed by an activation energy Ea = 0.12 eV. Further investigations using modulus formalism proved the presence of electrical relaxation, which is in good agreement with impedance results. The dielectric poly-dispersive behavior is related to the conduction process and the large value of the dielectric constant \(\varepsilon^{\prime\prime}(\omega )\) in the order of 106 is correlated to the Maxwell–Wagner relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, M.M. Hasan, Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3. J. Appl. Phys. 112, 074105 (2012)

    Article  CAS  Google Scholar 

  2. M. Saleem, M.A. Dar, A. Mishra, Structural and transport properties of composite of La0.8Sr0.2MnO3 and BaTiO3 materials. J. Mater. Sci.: Mater. Electron. 31, 8546–8555 (2020)

    CAS  Google Scholar 

  3. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal et al., Effect of Gd3+ ion insertion on the crystal structure, photoluminescence, and dielectric properties of o-mullite nanoparticles. J. Electron. Mater. 43, 3559–3566 (2014)

    Article  CAS  Google Scholar 

  4. Qu. Jingjing, F. Liu, X. Wei, C. Yuan, X. Liu, X. Huang, X. Liu, New dielectric material systems of SrxNd2 (1–x)/3TiO3 perovskites-like at microwave frequencies. Mater. Chem. Phys. 173, 309–316 (2016)

    Article  CAS  Google Scholar 

  5. S. Choura-Maatar, M.M. Nofal, R. Mnassri et al., Enhancement of the magnetic and magnetocaloric properties by Na substitution for Ca of La08Ca02MnO3 manganite prepared via the Pechini-type sol–gel process. J. Mater. Sci.: Mater Electron. 31, 1634–1645 (2020)

    CAS  Google Scholar 

  6. Y. Bourlier, B. Bérini, M. Frégnaux, A. Fouchet, D. Aureau, Y. Dumont, Transfer of epitaxial SrTiO3 nanothick layers using water-soluble sacrificial perovskite oxides. ACS Appl. Mater. Interfaces 7, 8466–8474 (2020)

    Article  CAS  Google Scholar 

  7. S. Merten, O. Shapoval, B. Damaschke et al., Magnetic-field-induced suppression of Jahn-Teller phonon bands in (La0.6Pr0.4)0.7Ca0.3MnO3: the mechanism of colossal magnetoresistance shown by Raman spectroscopy. Sci Rep 9, 2387 (2019)

    Article  CAS  Google Scholar 

  8. W. Ncib, A. Ben Jazia Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Investigation of structural, electrical and dielectric properties of sol-gel prepared La0.67xEuxBa0.33 Mn0.85Fe0.15O3 (x = 0.0, 0.1) manganites. J. Alloys Compd. 768, 249–262 (2018)

    Article  CAS  Google Scholar 

  9. M.M.S. Sanad, H.A. Abdellatif, E.M. Elnaggar, G.M. El-Kady, M.M. Rashad, Understanding structural, optical, magnetic and electrical performances of Fe- or Co-substituted spinel LiMn1.5Ni0.5O4 cathode materials. Appl. Phys. A 125, 139 (2019)

    Article  CAS  Google Scholar 

  10. I. Ouni, H. Ben Khlifa, R. Mnassri, M.M. Nofal, H. Rahmouni, W. Cheikhrouhou, N. Chniba-Boudjada, K. Khirouni, A. Cheikhrouhou, Structural, magnetic, electrical and dielectric properties of Pr0.8Na0.2MnO3 manganite. RSC Adv. 93, 599–35607 (2019)

    Google Scholar 

  11. S. Yamada, N. Abe, H. Sagayama, K. Ogawa, T. Yamagami, T. Arima, Room-temperature low-field colossal magnetoresistance in double-perovskite manganite. Phys. Rev. Lett. 123, 126602 (2019)

    Article  CAS  Google Scholar 

  12. L.A. Burrola-Gándara, R.J. Sáenz-Hernández, C.R. Santillán-Rodríguez, D. Lardizabal-Gutiérrez, P. Pizá-Ruiz, J.T. Elizalde Galindo, J.A. Matutes-Aquino, Spin-lattice coupling, Jahn-Teller effect and the influence of the measurement rate in La0.7Ca0.3−xSrxMnO3 manganites. AIP Adv. 6, 056219 (2016)

    Article  CAS  Google Scholar 

  13. S. Das, T.K. Dey, Structural and magnetocaloric properties of La1−yNayMnO3 compounds prepared by microwave processing. J. Phys. D: Appl. Phys. 40, 1855–1863 (2007)

    Article  CAS  Google Scholar 

  14. V. Gupta, B. Raina, K.K. Bamzai, Preparation, structural, spectroscopic and magneto-electric properties of multiferroic cadmium doped neodymium manganite. J. Mater. Sci.: Mater. Electron. 29, 8947–8957 (2018)

    CAS  Google Scholar 

  15. H.E. Sekrafi, A. Ben Jazia Kharrat, M.A. Wederni, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric properties and conduction mechanism of sol-gel prepared Pr0.75Bi0.05Sr0.1Ba0.1Mn0.98Ti0.02O3 compound. Nanotechnology 111, 329–337 (2019)

    CAS  Google Scholar 

  16. A. Khlifi, A. Mleiki, H. Rahmouni et al., Barium deficiency and sintering temperature effects on structural and transport properties of La0.5Eu0.2Ba0.3−xMnO3 manganites. J. Mater. Sci.: Mater Electron. 30, 19513–19523 (2019)

    CAS  Google Scholar 

  17. I. Hanen Ghoud, S. Chkoundali, Z. Raddaoui, A. Aydi, Structure properties and dielectric relaxation of Ca0.1Na0.9Ti0.1Nb0.9O3 ceramic. RSC Adv. 9, 25358–25367 (2019)

    Article  Google Scholar 

  18. T. Jadli, A. Mleiki, H. Rahmouni, K. Khirouni, E.K. Hlil, A. Cheikhrouhou, Investigation of physical properties of manganite on example of Sm0.35Pr0.2Sr0.45MnO3. Phys. B 600, 412548 (2021)

    Article  CAS  Google Scholar 

  19. A. Modi, M.A. Bhat, S. Bhattacharya et al., Investigation of structural and some physical properties of Cr substituted polycrystalline Eu0.5Sr0.5Mn1−xCrxO3 (0 ≤ x ≤ 0.1) manganites. J. Mater. Sci.: Mater. Electron. 27, 8899–8905 (2016)

    CAS  Google Scholar 

  20. S. Chouikhi, J. Khelifi, M. Nasri, E. Dhahri, K. Khirouni, Magnetocaloric properties and dielectrical characterization of (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3 manganite oxide. J. Low Temp. Phys. Model. Magn. 197, 471–484 (2019)

    Article  CAS  Google Scholar 

  21. N. Assoudi, W. Hzez, R. Dhahri, I. Walha, H. Rahmouni, K. Khirouni, E. Dhahri, Physical properties of Ag/Ca doped lantanium manganite. J. Mater. Sci.: Mater Electron. 29, 20113–20121 (2018)

    CAS  Google Scholar 

  22. W. Cheikh-Rouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Effect of potassium doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.3−xKxMnO3 perovskite manganites. J. Alloys Compd. 470, 42–46 (2009)

    Article  CAS  Google Scholar 

  23. S. Zemni, J. Dhahri, K. Cherif, J. Dhahri, M. Oumezzine, M. Ghedira, H. Vincent, Structure, magnetic and electrical properties of La0.6Sr0.4−xKxMnO3 perovskites. J. Alloys Compd. 392, 55–61 (2005)

    Article  CAS  Google Scholar 

  24. E. Taşarkuyu, A.E. Irmak, A. Coskuna, S. Aktürk, Structural, magnetic and transport properties of La0.70Sr0.21K0.09MnO3. J. Alloys Compd. 588, 422 (2014)

    Article  CAS  Google Scholar 

  25. S. ELKossi, J. Dhahri, E.K. Hlil, Structural, magnetic and theoretical investigations on the magnetocaloric properties of La0.7Sr0.25K0.05MnO3 perovskite. RSC Adv. 6, 63497–63507 (2016)

    Article  CAS  Google Scholar 

  26. Y. Sun, Xu. Xiaojun, Y. Zhang, Variable-range hopping of small polarons in mixed-valence manganites. J. Phys: Condens. Matter 12, 10475 (2000)

    CAS  Google Scholar 

  27. D. Triyono, S.N. Fitria, U. Hanifah, Dielectric analysis and electrical conduction mechanism of La1−xBixFeO3 ceramics. RSC Adv. 10, 18323–18338 (2020)

    Article  CAS  Google Scholar 

  28. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, Mechanical, morphological and dielectric properties of sintered mullite ceramics at two different heating rates prepared from alkaline monophasic salts. Ceram. Int. 39, 1547–1554 (2013)

    Article  CAS  Google Scholar 

  29. O. Farooq, F. Ghafoor, A. Haq et al., Structural dependence of conductivity in rare earth doped strontium cobaltite nanoparticles. J. Supercond. Nov. Magn. 30, 1123–1127 (2017)

    Article  CAS  Google Scholar 

  30. T. Badapanda, R. Harichandan, T.B. Kumar et al., Dielecric relaxation and conduction mechanism of dysprosium doped barium bismuth titanate Aurivillius ceramics. J. Mater. Sci.: Mater. Electron. 28, 2775–2787 (2017)

    CAS  Google Scholar 

  31. A.K. Jonscher, Physical basis of dielectric loss. Nature 253, 717–719 (1975)

    Article  CAS  Google Scholar 

  32. A.K. Jonscher, New interpretation of dielectric loss peaks. Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  33. H. Rahmouni, R. Jemai, M. Nouiri, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, Admittance spectroscopy and complex impedance analysis of Ti-modified La0.7Sr0.3MnO3. J. Cryst. Growth 310, 556–561 (2008)

    Article  CAS  Google Scholar 

  34. A. Mleiki, A. Khlifi, H. Rahmouni, N. Guermazi, K. Khirouni, E.K. Hlil, A. Cheikhrouhou, Magnetic and dielectric properties of Ba-lacunar La0.5Eu0.2Ba0.3MnO3 manganites synthesized using sol-gel method under different sintering temperatures. J. Magn. Magnet. Mater. 502, 166571 (2020)

    Article  CAS  Google Scholar 

  35. S. Biswas, S. Pal, Hopping conduction mechanism of Pr1−xNdxMnO3 (x = 0.3, 0.5, 0.7). AIP Conf. Proc. 1832, 110037 (2017)

    Article  CAS  Google Scholar 

  36. S. Khobragade, S. Patel, Thermal energy harvesting capabilities in lead-free Ba0.85Ca0.15Ti0.9−xSnxZr0.10O3 ferroelectric ceramics. J. Electron. Mater. 49, 1194–1203 (2020)

    Article  CAS  Google Scholar 

  37. I. Zouari, Z. Sassi, L. Seveyrat, N. Abdelmoula, L. Lebrun, H. Khemakhem, Effect of Na0.5Bi0.5TiO3 on structural, dielectric and ferroelectric properties of Ba1-yPr2y/3qy/3Ti0.9Zr0.1O3 ceramic. J. Alloys Compd. 825, 153859 (2020)

    Article  CAS  Google Scholar 

  38. A.K. Roy, K. Prasad, A. Prasad, Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. Process. Appl. Ceram. 7, 81–91 (2013)

    Article  CAS  Google Scholar 

  39. A.K. Bera, N. Shah, S.M. Yusuf, Impedance spectroscopy study of the layered battery material Na1.8Ni2TeO6. AIP Conf. Proc. 2115, 030568 (2019)

    Article  CAS  Google Scholar 

  40. S. Praharaj, P. Biswas, D. Rout, Dielectric relaxation study of Pb(Yb0.5Ta0.5)O3 near ferroelectric phase transition. AIP Conf. Proc. 1953, 040022 (2018)

    Article  CAS  Google Scholar 

  41. B. Ullah, W. Lei, X.-Q. Song, X.-H. Wang, W.-Z. Lu, Perovskite structure and low frequency relaxor-like-dielectric response of (Sr, Ce)TiO3 solid solution. Ceram. Int. 43, 16376–16383 (2017)

    Article  CAS  Google Scholar 

  42. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, K. Powers, Structural, microstructure, mechanical and electrical properties of porous Zr4+-cordierite ceramic composites. JMEPEG 23, 867–874 (2014)

    Article  CAS  Google Scholar 

  43. I. Ahmad, M.J. Akhtar, M. Younas, Effects of temperature on conduction mechanism, ac electrical and dielectric properties of NdFe0.9Ni0.1O3 by employing impedance spectroscopy. J Solid State Electrochem. 21, 3093–3101 (2017)

    Article  CAS  Google Scholar 

  44. D. Johnson, ZView: A Software Program for IES Analysis, Version 2.8, Scribner Associates, Inc., Southern Pines, NC (2002).

  45. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, Synthesis and characterization of nanocrystalline mullite powders at low annealing temperature using a new technique. J. Eur. Ceram. Soc. 32, 4249–4255 (2012)

    Article  CAS  Google Scholar 

  46. Z. Raddaoui, S. ElKossi, J. Dhahri, N. Abdelmoula, K. Taibi, Study of diffuse phase transition and relaxor ferroelectric behavior of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 ceramic. RSC Adv. 9, 2412–2425 (2019)

    Article  CAS  Google Scholar 

  47. A. Ben Jazia Kharrat, K. Khirouni, W. Boujelben, Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route. Phys. Lett. A 380, 3435–3448 (2018)

    Article  CAS  Google Scholar 

  48. M.Z. Ahsan, Pk.M.A. Ahsan, M.A. Islam, F.C. Asif, Structural and electrical properties of copper doped lanthanum manganite NPs. Results Phys. 15, 102600 (2019)

    Article  Google Scholar 

  49. N. Assoudi, W. Hzez, R. Dhahri et al., Physical properties of Ag/Ca doped lantanium manganite. J. Mater. Sci.: Mater. Electron. 29, 20113–20121 (2018)

    CAS  Google Scholar 

  50. F. Alresheedi, S. Hcini, M.L. Bouazizi et al., Synthesis and study of impendence spectroscopy properties of La0.6Ca0.2Na0.2MnO3 manganite perovskite prepared using sol–gel method. J. Mater. Sci.: Mater Electron. 31, 8248–8257 (2020)

    CAS  Google Scholar 

  51. Z. Raddaoui, S. El Kossi, T. Al-shahrani et al., Study of structural, conduction mechanism and dielectric behavior of La0.7Sr0.3Mn0.8Fe0.2O3 manganite. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04686-9

    Article  Google Scholar 

  52. K. Yadagiri, R. Nithya, Rare earth manganite: a.c. electrical properties of Dy1−xKxMnO3 (x = 0.1, 0.2). J. Mater. Sci.: Mater. Electron. 30, 9973–9982 (2019)

    CAS  Google Scholar 

  53. M. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 8, 4634–4648 (2018)

    Article  Google Scholar 

  54. R.P. Pawar, V. Puri, Structural, electrical and dielectric properties of (Sr1-xCax)MnO3 (0≤ x ≤ 1.0) ceramics. Ceram. Int. 40, 10423–10430 (2014)

    Article  CAS  Google Scholar 

  55. L.-G. Cai, F.-M. Liu, D. Zhang, W.-W. Zhong, Electronic and optical properties of distorted rare-earth manganite under hydrostatic pressure. Solid State Commun. 152, 1036–1041 (2012)

    Article  CAS  Google Scholar 

  56. M. Maczka, N.L.M. Costa, A. Gagor, W. Paraguassu, A. Sieradzki, J. Hanuza, Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate. Phys. Chem. Chem. Phys 18, 13993 (2016)

    Article  CAS  Google Scholar 

  57. P. Nayak, T. Badapanda, A.K. Singh, S. Panigrah, An approach for correlating the structural and electrical properties of Zr4+-modified SrBi4Ti4O15/SBT ceramic. RSC Adv. 7, 16319 (2017)

    Article  CAS  Google Scholar 

  58. W. Ncib, A. BenJaziaKharrat, M. Saadi et al., Structural, AC conductivity, conduction mechanism and dielectric properties of La0.62Eu0.05Ba0.33Mn0.85Fe0.15O3 ceramic compound. J. Mater. Mater. Electron. 30, 18391–18404 (2019)

    Article  CAS  Google Scholar 

  59. Z. Sun, L. Li, S. Yu, X. Kang, S. Chen, Energy storage properties and relaxor behavior of lead-free Ba1−xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans. 46, 14341–14347 (2017)

    Article  CAS  Google Scholar 

  60. L. Badr, Low temperature conductivity and ion dynamics in silver iodide-silver metaphosphate glasses. Phys. Chem. Chem. Phys. 19, 21527–21531 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under Project No. (RGP-2019-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Selmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmi, M., Smida, A. & Kossi, S.E. Effect of Polaron formation in conduction and dielectric behavior in La0.7Sr0.25K0.05MnO3 oxide. J Mater Sci: Mater Electron 32, 6014–6027 (2021). https://doi.org/10.1007/s10854-021-05321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05321-x

Navigation