Skip to main content
Log in

RETRACTED ARTICLE: Structural, dielectric and electrical properties of cerium-modified strontium manganite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 30 September 2021

This article has been updated

Abstract

In this communication, structural, dielectric, spectroscopic and electrical characteristics of cerium-modified strontium manganite perovskite of a composition SrMn0.9Ce0.1O3, (SMCO) prepared by a high-temperature solid-state reaction technique have been reported. The preliminary structural analysis of SrMnO3 exhibits hexagonal (P63/mmc) crystal structure, whereas SMCO, synthesized under identical conditions, shows a tetragonal (I4/mmm) structure. The average crystallite size and lattice strain of SMCO using X-ray data were found to be 74 nm and 0.107%, respectively. The surface morphology, study by the scanning electron microscopy (SEM), shows distinct grains of average size of 19.2 μm. The X-ray photoelectron spectroscopy (XPS) study confirms the oxidation state of Mn and Ce as Mn4+ and Ce4+ and composition of SMCO compound. The grains and the grain boundaries play an important role to explain the conduction mechanism. The bulk resistance (Rb) decreases from 1.020 × 105 Ω at 25 °C to 1.096 × 103 Ω at 500 °C. This behaviour of decrease in resistance with the increase in temperature shows semiconductor (negative temperature coefficient resistance) nature of the material at high temperatures. The variation of the activation energies with temperature suggests that the ac conductivity is thermally activated. The immobile charge carriers at low temperatures and defects and oxygen vacancies at high temperatures are responsible for the thermally activated conduction mechanism. Detailed studies of electrical parameters as a function of frequency at different temperatures using dielectric and impedance spectroscopy of SMCO have provided conduction mechanism and structural properties relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. S. Hashimoto, H. Iwahara, Structural, thermal and electrical properties of Ce-doped SrMnO3. J. Electroceram. 4, 225–231 (2000)

    Article  CAS  Google Scholar 

  2. S. Hashimoto, H. Iwahara, Study on the structural and electrical properties of Sr1−xCexMnO3−α (x = 0.1, 0.3) perovskite oxide. Mater. Res. Bull. 35, 2253–2262 (2000)

    Article  CAS  Google Scholar 

  3. K.J. Lee, E. Iguchi, Electronic properties of SrMnO3-x. J. Solid State Chem. 114, 242–248 (1995)

    Article  CAS  Google Scholar 

  4. C. Jeong, J. Ryu, T. Noh, Y.-N. Kim, H. Lee, Structural analysis and electrode performance of Ce doped SrMnO3 synthesized by EDTA citrate complexing process. Adv. Appl. Ceram. 112, 494–498 (2013)

    Article  CAS  Google Scholar 

  5. J. Ryu, R. O’Hayre, H. Lee, Polarization resistance and composite cathode of Ce doped SrMnO3 system for intermediate temperature solid oxide fuel cells. Solid State Ionics 260, 60–64 (2014)

    Article  CAS  Google Scholar 

  6. J. Ryu, H. Lee, Local structure and polarization resistance of Ce doped SrMnO3 using extended X-ray fine structure analysis. Appl. Phys. Lett. 105, 111903–111904 (2014)

    Article  CAS  Google Scholar 

  7. G.H. Jonker, J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337–349 (1950)

    Article  CAS  Google Scholar 

  8. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    Article  CAS  Google Scholar 

  9. P.W. Anderson, H. Hasegawa, Considerations on double exchange. Phys. Rev. 100, 675–681 (1955)

    Article  CAS  Google Scholar 

  10. P.G. De Gennes, Effects of double exchange in magnetic crystals. Phys. Rev. 118, 41–154 (1960)

    Article  Google Scholar 

  11. K. Kubo, N. Ohata, A quantum theory of double exchange. I. J Phys. Soc. Jpn. 33, 21–32 (1972)

    Article  CAS  Google Scholar 

  12. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995)

    Article  CAS  Google Scholar 

  13. A.J. Millis, B.I. Shraiman, R. Mueller, Dynamic Jahn-Teller effect and colossal magnetoresistance in La1xSrxMnO3. Phys. Rev. Lett. 77, 175–178 (1996)

    Article  CAS  Google Scholar 

  14. H.A. Jahn, E. Teller, Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. R. Soc. Lond. A 161, 220–235 (1937)

    Article  CAS  Google Scholar 

  15. H. Röderm, J. Zang, A.R. Bishop, Lattice effects in the colossal magnetoresistance manganites. Phys. Rev. Lett. 76, 1356–1359 (1996)

    Article  Google Scholar 

  16. J.S. Zhou, J.B. Goodenough, Phonon-assisted double exchange in perovskite manganites. Phys. Rev. Lett. 80, 2665–2668 (1998)

    Article  CAS  Google Scholar 

  17. A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996)

    Article  CAS  Google Scholar 

  18. B.M. Weckhuysen, M.P. Rosynek, J.H. Lunsford, Destructive adsorption of carbon tetrachloride on lanthanum and cerium oxides. Phys. Chem. Chem. Phys. 1, 3157–3162 (1999)

    Article  CAS  Google Scholar 

  19. F. Yang, J. Wei, W. Liu, J. Guo, Y. Yang, Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatile approach. Mater. Chem. A 2, 5662–5667 (2014)

    Article  CAS  Google Scholar 

  20. S. Tsunekawa, T. Fukuda, A. Kasuya, Blueshift in ultraviolet absorption spectra of monodisperse CeO2–x nanoparticles. Appl. Phys. 87, 1318–1321 (2000)

    Article  CAS  Google Scholar 

  21. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, Defect and transport properties of nanocrystalline, CeO2−x. Appl. Phys. Lett. 69, 185–187 (1996)

    Article  CAS  Google Scholar 

  22. A. Abdel-Latif, L.A. Al-Hajji, M. Faisal, A.A. Ismail, Doping strontium into neodymium manganites nanocomposites for enhanced visible light driven photocatalysis. Sci. Rep. 9, 13932–13942 (2019)

    Article  CAS  Google Scholar 

  23. A.K. Mandal, G. Panchal, S. Chowdhury, A. Jana, R.J. Choudhary, D.M. Phase, Electronic and magnetic properties of stoichiometric and off-stoichiometric SrMnO3 thin films. J. Supercond. Novel Magnet. 33, 1633–1636 (2020)

    Article  CAS  Google Scholar 

  24. J.W. Guo, P.S. Wang, Y. Yuan, Q. He, J.L. Lu, T.Z. Chen, S.Z. Yang, Y.J. Wang, R. Erni, M.D. Rossell, V. Gopalan, H.J. Xiang, Y. Tokura, P. Yu, Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films. Phys. Rev. B 97, 235135–235138 (2018)

    Article  CAS  Google Scholar 

  25. A.K. Mandal, G. Panchal, R.J. Choudhary, D.M. Phase, Magnetic and electronic properties of SrMnO3 thin films. AIP Conf. Proc. 1953, 100035 (2018)

    Article  CAS  Google Scholar 

  26. S. Yasmin, S. Choudhury, M.A. Hakim, A.H. Bhuiyan, M.J. Rahman, Structural and dielectric properties of pure and cerium doped barium titanate. J. Ceram. Process. Res. 12, 387–391 (2011)

    Google Scholar 

  27. C.G. Hu, H. Liu, C.S. Lao, L.Y. Zhang, D. Davidovic, Z.L. Wang, Size-manipulable synthesis of single crystalline BaMnO3 and BaTi1/2Mn1/2O3 nanorods/nanowires. J. Phys. Chem. B 110, 14050–14054 (2006)

    Article  CAS  Google Scholar 

  28. S. Phokha, S. Pinitsoontorn, S. Maensiri, Structure and magnetic properties of monodisperse Fe3+ doped CeO2 nanospheres. Nano-Micro Lett. 5, 223–233 (2013)

    Article  CAS  Google Scholar 

  29. C. Xia, C. Hu, P. Chen, B. Wan, X. He, Y. Tian, Magnetic properties and photoabsorption of the Mn-doped CeO2 nanorods. Mater. Res. Bul. 45, 794–798 (2010)

    Article  CAS  Google Scholar 

  30. L. Bi, H.-S. Kim, G.F. Dionne, S.A. Speakman, D. Bono, C.A. Ross, Structural, magnetic, and magneto-optical properties of Co-doped CeO2−δ films. Appl. Phys. 103, 07D138:1–07D138:3 (2008)

    Article  CAS  Google Scholar 

  31. X.B. Chen, G.S. Li, Y.G. Su, X.Q. Qiu, L.P. Li, Z.G. Zou, Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping. Nanotechnology 20, 115606–115613 (2009)

    Article  CAS  Google Scholar 

  32. N.S. Ferreira, M.A. Macêdo, Cr-doping induced ferromagnetism in CeO2δ no powders. Adv. Mater. Res. 975, 42–49 (2014)

    Article  CAS  Google Scholar 

  33. N. Sharma, S. Jandaik, S. Kumar, M. Chitkara, I.S. Sandhu, Synthesis, characterization and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles. J. Exp. Nanosci. 11, 54–71 (2016)

    Article  CAS  Google Scholar 

  34. F. Vaja, O. Oprea, D. Ficai, A. Ficai, C. Guran, Synthesis of CeO2 nanoparticles on the mesoporous silica support via nano casting,". Digest J. Nanomater. Biostruct. 9, 187–195 (2014)

    Google Scholar 

  35. H. Shinjoh, Rare earth metals for automotive exhaust catalysts. J. Alloys Compd. 408–412, 1061–1064 (2006)

    Article  CAS  Google Scholar 

  36. M. Sugiura, M. Ozawa, A. Suda, T. Suzuki, T. Kanazawa, Development of innovative three-way catalysts containing ceria-zirconia solid solutions with high oxygen storage/release capacity. Bull. Chem. Soc. Jpn. 78, 752–776 (2005)

    Article  CAS  Google Scholar 

  37. R.J.H. Voorhoeve, Advanced Materials in Catalysis (Academic Press, New York, 1977), pp. 1–129

    Google Scholar 

  38. J.A. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, New York, 1998).

    Google Scholar 

  39. N. Pandey, A.K. Thakur, Studies on structural and electrical properties of SrMnO3δ prepared in oxidizing medium. Adv. Appl. Ceram. 109, 83–90 (2010)

    Article  CAS  Google Scholar 

  40. K. Kuroda, N. Ishizawa, N. Mizutani, M. Kato, The crystal structure of α-SrMnO3. J. Solid State Chem. 38, 297–299 (1981)

    Article  CAS  Google Scholar 

  41. R.K. Parida, D.K. Pattanayak, B.N. Parida, Impedance, and modulus analysis of double perovskite Pb2BiVO6. J. Mater. Sci. Mater. Electron. 28(22), 16689–16695 (2017)

    Article  CAS  Google Scholar 

  42. J. Ryu, T. Noh, Y.-N. Kim, H. Lee, Lattice relaxation and electrochemical performances of cobalt-doped Sr0.9Ce0.1MnO3δ composite cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 163, F657–F662 (2016)

    Article  CAS  Google Scholar 

  43. G. Shirane, S. Hoshino, On the phase transition in lead titanate. J. Phys. Soc. Jpn. 6, 265–270 (1951)

    Article  CAS  Google Scholar 

  44. Y. Xu, Ferroelectric Materials, and Their Applications (North Holland, Amsterdam, 1991).

    Google Scholar 

  45. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading MA, 1967), p. 388

    Google Scholar 

  46. S.K. Parida, R.N.P. Choudhary, P.G.R. Achary, Structure and ferroelectric properties of lead nickel tungsten titanate: Pb(Ni1/3T1/3W1/3)O3 single perovskite. Ferroelectrics 551, 109–121 (2019)

    Article  CAS  Google Scholar 

  47. S.K. Parida, Structural behavior of Cu0.5Ag0.5 and Cu0.5Al0.5 alloys synthesized by co-melting technique. Adv. Sci. Lett. 22(2), 584–587 (2016)

    Article  Google Scholar 

  48. A.B.J. Kharrat, N. Moutiab, K. Khirouni, W. Boujelben, Investigation of electrical behavior and dielectric properties in polycrystalline Pr0.8Sr0.2MnO3 manganite perovskite. Mater. Res. Bull. 105, 75–83 (2018)

    Article  CAS  Google Scholar 

  49. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphinc, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)

    Article  CAS  Google Scholar 

  50. E.K. Goharshadi, S. Samiee, P. Nancarrow, J. Colloid Interf. Sci. 356, 473 (2011)

    Article  CAS  Google Scholar 

  51. C.B. Azzoni, M.C. Mozzati, A. Paleari, V. Massarotti, D. Capsoni, M. Bini, Magnetic order in Li-Mnspinels. Z. Nat. Forsch. A 53, 693–698 (1998)

    CAS  Google Scholar 

  52. C.D. Wagner, D.A. Zatko, R.H. Raymond, Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal. Chem. 52, 1445–1451 (1980)

    Article  CAS  Google Scholar 

  53. J.W. Murray, J.G. Dillard, R. Giovanoli, H. Moers, W. Stumm, Oxidation of Mn(II): initial mineralogy, oxidation state and ageing. Geochim. Cosmochim. Acta 49, 463–470 (1985)

    Article  CAS  Google Scholar 

  54. Q.-H. Wu, M. Liu, W. Jaegermann, X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater. Lett. 59, 1480–1483 (2005)

    Article  CAS  Google Scholar 

  55. N.K. Mohanty, S.K. Satapathy, B. Behera, P. Nayak, R.N.P. Choudhary, Complex impedance properties of LiSr2Nb5O15 ceramic. J. Adv. Ceram. 1, 221–226 (2012)

    Article  CAS  Google Scholar 

  56. B.N. Parida, R.K. Parida, A. Panda, Multi-ferroic, and optical spectroscopy properties of (Bi0.5Sr0.5) (Fe0.5Ti0.5)O3 solid solution. J. Alloys Compds. 696, 338–344 (2017)

    Article  CAS  Google Scholar 

  57. S.K. Dehury, P.G.R. Achary, R.N.P. Choudhary, Electrical and dielectric properties of bismuth holmium cobalt titanate (BiHoCoTiO6): a complex double perovskite. J. Mater. Sci. Mater. Electron. 29, 3682–3689 (2018)

    Article  CAS  Google Scholar 

  58. M. Greenblatt, Ionic Conductors, Encyclopedia of Inorganic Chemistry (Wiley, New York, 1999), p. 1584

    Google Scholar 

  59. H. Siebert, Anwendungen Der Schwingungsspektroskopie in Der AnorganischenChemie (Springer, Berlin, 1966).

    Book  Google Scholar 

  60. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  CAS  Google Scholar 

  61. M. Abbassi, R. Ternane, I. Sobrados, A. Madani, M. Trabelsi-Ayadi, J. Sanz, Ceram. Int. 39, 9215 (2013)

    Article  CAS  Google Scholar 

  62. S. Selvasekarapandian, M. Vijaykumar, The ac impedance spectroscopy studies on LiDyO2 Mater. Chem. Phys. 80, 29–33 (2003)

    CAS  Google Scholar 

  63. M.B. Hossen, A.K.M.A. Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J Adv Ceram. 4, 217–225 (2015)

    Article  CAS  Google Scholar 

  64. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  65. S.K. Sinha, S.N. Choudhary, R.N.P. Choudhary, Studies of structural, dielectric and electrical behavior of Pb(Mn1/4Co1/4W1/2)O3 ceramics. J. Mater. Sci. 39, 315–318 (2004)

    Article  CAS  Google Scholar 

  66. M.B. Bechir, K. Karoui, M. Tabellout, K. Guidara, A.B. Rhaiem (2014) J. Alloys Compd. 588, 551-557 (2014)

  67. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    CAS  Google Scholar 

  68. S.K. Parida, R.N.P. Choudhary, P.G.R. Achary, Study of structural and electrical properties of polycrystalline Pb(Cd1/3Ti1/3W1/3)O3 tungsten perovskite. Int. J. Microstruct. Mater. Prop. 15, 107–121 (2020)

    Google Scholar 

  69. P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound. Process. Appl. Ceram. 14(2), 146–153 (2020)

    Article  CAS  Google Scholar 

  70. R. Gao, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, C. Fu, W. Cai, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos. B 166, 204–212 (2019)

    Article  CAS  Google Scholar 

  71. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, Enhancement of magnetoelectric properties of (1–x)Mn0.5Zn0.5Fe2O4xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J. Alloys Compds. 1(795), 501–512 (2019)

    Article  CAS  Google Scholar 

  72. S. Hajra, M. Sahu, V. Purohit, R.N.P. Choudhary, Dielectric, conductivity, and ferroelectric properties of lead-free electronic ceramic: 0.6Bi(Fe0.98Ga0.02)O3–0.4BaTiO3. Heliyon 5, 01654–01663 (2019)

    Article  Google Scholar 

  73. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman & Hall, London, 1990).

    Google Scholar 

  74. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Clarendon Press, Oxford, 1892).

    Google Scholar 

  75. K.B.R. Varma, K.V.R. Prasad, Structural and dielectric properties of Bi2NbxVi−xO5.5 ceramics. J. Mater. Res. 11, 2288–2292 (1996)

    Article  CAS  Google Scholar 

  76. P. Keburis, J. Banys, A. Brilingas, J. Prapuolenis, A. Kholkin, M.E.V. Costa, Ferroelectrics 353, 149–158 (2007)

    Article  CAS  Google Scholar 

  77. R.P. Pawar, V. Puri, Structural, electrical and dielectric properties of (Sr1xCax) MnO3 (0 ≤ x ≤ 1.0 ceramics. Ceram. Int. 40, 10423–10430 (2014)

    Article  CAS  Google Scholar 

  78. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  79. M.M.S. Sanad, M.M. Rashad, Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare earth co-activators. J. Mater. Sci. 27, 9034–9043 (2016)

    CAS  Google Scholar 

  80. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, Mechanical, morphological and dielectric properties of sintered mullite ceramics at two different heating rates prepared from alkaline monophasic salts. Ceram. Int. 39, 1547–1554 (2013)

    Article  CAS  Google Scholar 

  81. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, Synthesis and characterization of nanocrystalline mullite powders at low annealing temperature using a new technique. J. Eur. Ceram. Soc. 32, 4249–4255 (2012)

    Article  CAS  Google Scholar 

  82. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, K. Powers, Effect of Gd3+ ion insertion on the crystal structure, photoluminescence, and dielectric properties of o-Mullite nanoparticles. J. Electron. Mater. 43, 3559–3566 (2014)

    Article  CAS  Google Scholar 

  83. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, K. Powers, Novel cordierite nanopowders of new crystallization aspects and its cordierite-based glass ceramics of improved mechanical and electrical properties for optimal use in multidisciplinary scopes. Mater. Chem. Phys. 162, 299–307 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors render special thanks to Dr. U. P. Deshpande, Scientist of UGC-DAE Consortium for Scientific Research, Indore for extending the facility to carry out the X-ray photoelectron spectroscopy (XPS) study and Prof. K. M. Parida, Director, Centre of Nanoscience and nanotechnology for facilitating FTIR characterization in time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Parida.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10854-021-07112-w

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achary, P.G.R., Behera, S., Choudhary, R.N.P. et al. RETRACTED ARTICLE: Structural, dielectric and electrical properties of cerium-modified strontium manganite ceramics. J Mater Sci: Mater Electron 32, 5738–5754 (2021). https://doi.org/10.1007/s10854-021-05295-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05295-w

Navigation