Skip to main content
Log in

Magneto-dielectric properties of Mn-doped CoFe2O4: Yb-doped PbZrTiO3 multiferroic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The composite multiferroic materials manufactured by combining ferroelectric phase with the ferromagnetic phase offer promising applications for functional devices. The main aim of this work is on the detailed investigation of dielectric, magnetic and magnetodielectric properties of xCoMn0.1Fe1.9O4-(1 − x) Pb0.93Yb0.07Zr0.52Ti0.48O3 (x = 0.02, 0.05 and 0.08) multiferroic composites. We also present First Order Reversal Curve analysis of the multiferroic composites. The composite multiferroics were synthesized by solid state reaction method while the individual phases, Pb0.93Yb0.07Zr0.52Ti0.48O3 and CoMn0.1Fe1.9O4, were prepared by sol gel auto-combustion technique. The XRD studies confirm the phase formation of the composites with no observation of any additional phases in the systems. By studying the dielectric and magnetic properties, it was demonstrated that the increase in the ferrite content of the composites has been found to remarkably improve the dielectric and magnetic properties of the composites. The observed anomalies in the dielectric constant with the temperature results from the ferroelectric phase transition of YbPZT, and the transition temperature enhances with increasing the ferrite content in the composites. The P-E hysteresis loops of the ferroelectric phase are well saturated; however, the composites have less-saturated loops in comparison to the YbPZT phase. Both the CMnFO and the composites displayed the well saturated magnetic hysteresis loops. Also the First Order Reversal Curve (FORC) analysis of the composite multiferroics further enlightens the information about the domain state of magnetisation and the interactions in the system. All the FORC diagrams exhibited a single contour implying that all the composites have unique magnetic phase (CMnFO). The ME coupling measured as a function of applied magnetic field demonstrates enhancement with increased ferrite content. This improved ME-effect demonstrates the strong coupling between the piezoelectric and magnetostrictive phases, which eventually will expand their scope in future generation material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Fiebig, J. Phys. D Appl. Phys. 38, 123–152 (2005)

    Article  CAS  Google Scholar 

  2. J.K. Dipti, S. Juneja, K.K. Singh, C. Raina, Ceram. Int. 4, 6018–6112 (2015)

    Google Scholar 

  3. V.E. Wood, A.E. Austin, Magnetoelectric interaction phenomena, in Crystals. ed. by A.J. Freeman, H. Schmid (Science Publishers, Gordon Breach, 1975)

    Google Scholar 

  4. G.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25(7), 475 (1982)

    Article  Google Scholar 

  5. Dantsiger, A.Y., Razumovskaya, O.N., Chenko, L.A.R.: High-Efficiency Piezoceramic Materials. A Reference Book (1994)

  6. Fritesberg, J.: In: Proceedings of the 4th International Meeting on Ferroelectricity, Leningrad (1977)

  7. G.H. Haertling, C.E. Land, J. Am. Ceram. Soc. 54, 1–11 (1971)

    Article  CAS  Google Scholar 

  8. C.E. Land, P.P. Thacher, Proc. IEEE 57, 751–768 (1969)

    Article  CAS  Google Scholar 

  9. J.S. Wright, L.F. Francis, J. Maker. Res. 8, 1712 (1993)

    Article  CAS  Google Scholar 

  10. R.W. McCallum, K.W. Dennis, D.C. Jiles, J.E. Snyder, Y.H. Chen, Low Temp. Phys. 27(4), 266–274 (2001)

    Article  CAS  Google Scholar 

  11. Q. Sun, Q. Gu, K. Zhu, J.J. Liu, J. Wang, J. Qiu, Sci. Rep. 7, 42274 (2017)

    Article  CAS  Google Scholar 

  12. P. Pahuja, R.K. Kotnala, R.P. Tandon, J. Alloys Compd. 617, 140–148 (2014)

    Article  CAS  Google Scholar 

  13. L. Weng, Y. Fu, S. Song, J. Tang, J. Li, Scr. Mater. 56(6), 465 (2007)

    Article  CAS  Google Scholar 

  14. A. Gupta, A. Huang, S. Shannigrahi, R. Chatterjee, Appl. Phys. Lett. 98(1), 112901 (2011)

    Article  CAS  Google Scholar 

  15. X. Wu, W. Cai, Y. Kan, P. Yang, Y. Liu, H. Bo, X. Lu, J. Zhu, Ferroelectrics 380(1), 48 (2009)

    Article  CAS  Google Scholar 

  16. J.H. Park, M.G. Kim, S.-J. Ahn, S. Ryu, H.M. Jang, J. Magn. Magn. Mater. 321(13), 1971 (2009)

    Article  CAS  Google Scholar 

  17. S.R. Shannigrahi, F.E.H. Tay, K. Yao, R.N.P. Choudhary, J. Eur. Ceram. Soc. 24(1), 163–170 (2004)

    Article  CAS  Google Scholar 

  18. J. Ryu, H.W. Kim, K. Uchino, J. Lee, Jpn. J. Appl. Phys. 42(3R), 1307–1310 (2003)

    Article  CAS  Google Scholar 

  19. S.R. Shannigrahi, R.N. Choudhary, H.N. Acharya, T.P. Sinha, Indian J. Pure Appl. Phys. 37(4), 359–362 (1999)

    CAS  Google Scholar 

  20. J.A. Paulsen, A.P. Ring, C.C.H. Lo, J.E. Snyder, D.C. Jiles, J. Appl. Phys. 97(4), 044502 (2005)

    Article  CAS  Google Scholar 

  21. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Smart, Mater. Struct. 18(11), 115028 (2009)

    CAS  Google Scholar 

  22. R. Roongtao, R. Baitahe, N. Vittayakorn, P. Seeharaj, W.C. Vittayakorn, Ferroelectrics 459(1), 119–127 (2014)

    Article  CAS  Google Scholar 

  23. S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, J. Semicond. 34(9), 093002 (2013)

    Article  CAS  Google Scholar 

  24. S.H. Choi, Korean J. Mater. Res. 28, 7 (2018)

    Google Scholar 

  25. A. J. P. Wilson, Mathematical Theory of X-ray Powder Diffractometry, Gordon, Breach New York. 92, (1963).

  26. G.K. Williamson, R.E. Smallman III., Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1(1), 34–36 (1956)

    Article  CAS  Google Scholar 

  27. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  28. B.K. Bammannavar, L.R. Naik, B.K. Chougule, J. Appl. Phys. 104(6), 064123 (2008)

    Article  CAS  Google Scholar 

  29. C. Li, R. Xu, R. Gao, Z. Wang, G. Chen, X. Deng, W. Cai, C. Fu, Q. Li, J. Phys. Commun. 3(12), 125010 (2019)

    Article  CAS  Google Scholar 

  30. P. Kumar, M. Kar, J. Alloys Compd. 584, 566–572 (2014)

    Article  CAS  Google Scholar 

  31. S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, J. Alloys Compd. 555, 330–334 (2013)

    Article  CAS  Google Scholar 

  32. T.G. Lupeiko, I.B. Lopatina, I.V. Kozyrev, L.A. Derbaremdiker, Inorg. Mater. 28(3), 481–485 (1992)

    Google Scholar 

  33. R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40(7), 9027–9036 (2014)

    Article  CAS  Google Scholar 

  34. A. Gupta, R. Chatterjee, J. Eur. Ceram. Soc. 33(5), 1017–1022 (2013)

    Article  CAS  Google Scholar 

  35. N. Ortega, A. Kumar, R.S. Katiyar, J. Mater. Sci. 44(19), 5127–5142 (2009)

    Article  CAS  Google Scholar 

  36. S.S. Chougule, B.K. Chougule, Mater. Chem. Phys. 108(2), 408–412 (2008)

    Article  CAS  Google Scholar 

  37. N. Adhlakha, K.L. Yadav, Smart Mater. Struct. 21(11), 1150211–1150219 (2012)

    Article  CAS  Google Scholar 

  38. N. Adhlakha, K.L. Yadav, R. Singh, Smart Mater. Struct. 23(10), 105024 (2014)

    Article  CAS  Google Scholar 

  39. Q. Sun, J. Hu, Q. Gu, K. Bian, J. Wang, K. Xiong, K. Zhu, Mater Technol. 32(41), 854–859 (2016)

    Article  CAS  Google Scholar 

  40. Y. Zhi, C. Ang, J. Appl. Phys. 91(2), 794–797 (2002)

    Article  CAS  Google Scholar 

  41. P.B. Belavi, L.R. Naik, R.K. Kotnala, V.L. Int, J. Sci. Eng. Res. 4, 43–53 (2013)

    Google Scholar 

  42. M. Etier, C.S. Antoniak, S. Salamon, H. Trivedi, Y. Gao, A. Nazrabi, J. Landers, Acta Mater. 90, 1–9 (2015)

    Article  CAS  Google Scholar 

  43. D. Damjanovic, Rep. Prog. Phys. 61(9), 1267 (1998)

    Article  CAS  Google Scholar 

  44. Y. Shen, J. Sun, L. Li, Y. Yao, C. Zhou, R. Su, Y. Yang, J. Mater. Chem. C. 2(14), 2545–2551 (2014)

    Article  CAS  Google Scholar 

  45. P.N. Dhruv, N. Solanki, S. Kulkarni, R.B. Jotania, AIP Conf Prec. 1728(1), 020074 (2016)

    Article  Google Scholar 

  46. C. Tannous, J. Gieraltowski, The Stonere Wohlfarth model of ferromagnetism. Eur. J. Phys. 29(3), 475–487 (2008)

    Article  CAS  Google Scholar 

  47. R. Grossinger, A critical examination of the law of approach to saturation. I. Fit procedure. Phys. Status Solidi A 66(2), 665–674 (1981)

    Article  Google Scholar 

  48. S. Chikazumi, Physics of Ferromagnetism. In: International Series of Monographs on Physics (Oxford University Press, Oxford, 2009), p. 94

    Google Scholar 

  49. A.C. Lima, M.A. Morales, J.H. Araujo, J.M. Soares, D.M.A. Melo, A.S. Carriço, Ceram. Int. 41(9), 11804–11809 (2015)

    Article  CAS  Google Scholar 

  50. S.N. Babu, J.H. Hsu, Y.S. Chen, J.G. Lin, J. Appl. Phys. 109(07), 07D904 (2011)

    Article  CAS  Google Scholar 

  51. G. Catalan, Appl. Phys. Lett. 88(10), 102902 (2006)

    Article  CAS  Google Scholar 

  52. D.K. Pradhan, V.S. Puli, S. Kumari, S. Sahoo, P.T. Das, K. Pradhan, D.K. Pradhan, J.F. Scott, R.S. Katiyar, J. Phys. Chem. C. 120(3), 1936–1944 (2016)

    Article  CAS  Google Scholar 

  53. D.P. Dutta, B.P. Mandal, R. Naik, G. Lawes, A.K. Tyagi, J. Phys. Chem. C 117(5), 2382–2389 (2013)

    Article  CAS  Google Scholar 

  54. N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, J. Phys. Condens. Matter 27(50), 504002 (2015)

    Article  CAS  Google Scholar 

  55. Y. Shen, J. Sun, L. Li, Y. Yao, C. Zhou, R. Su, Y. Yang, J. Mater. Chem. 2(14), 2545–2551 (2014)

    CAS  Google Scholar 

  56. I.D. Mayergoyz, Mathematical Models of Hysteresis (Springer, New York, 1991).

    Book  Google Scholar 

  57. G. Bertotti, Hysteresis in Magnetism for Physicists Material Scientist and Engineers (Academic Press, San Diego, 1998).

    Google Scholar 

  58. C.R. Pike, A.P. Roberts, K.L. Verosub, J. Appl. Phys. 85(9), 6660–6662 (1999)

    Article  CAS  Google Scholar 

  59. A.P. Roberts, C.R. Pike, K.L. Verosub, J. Geophys. Res. 105(B12), 28461–28475 (2000)

    Article  Google Scholar 

  60. R.J. Harrison, Geochem. Geophys. Geosyst 9(5), 05016 (2008)

    Article  Google Scholar 

  61. Y. Cao, M. Ahmadzadeh, K. Xu, B. Dodrill, J.S. McCloy, J. Appl. Phys. 123(2), 023902 (2018)

    Article  CAS  Google Scholar 

  62. B. Dodrill, P. Ohodnicki, M. McHenry, A. Leary, Mater. Mater. Res. Soc. 2(49), 2667–2674 (2017)

    Google Scholar 

  63. R. Day, M. Fuller, V.A. Schmidt, Phys. Earth Planet. Interiors 13(4), 260–267 (1977)

    Article  Google Scholar 

  64. H. Liu, Y. Yan, H. Chang, H. Chen, L. Liang, X. Liu, X. Qiang, Y. Sun, Atmos. Chem. Phys. 19(2), 731–745 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The University of Kashmir authorities are highly acknowledged for their support by providing the facility of a Vibrating Sample Magnetometer (MicroSense EZ9 VSM) to the Department of Physics for carrying out magnetic measurements. Also the University Grants Commission (UGC) is acknowledged for providing the financial assistance under Special Assistance Programme Phase-I to the Physics Department for materials science as a major area.

Author information

Authors and Affiliations

Authors

Contributions

NH conceived, designed the experiments and wrote the paper; BW supervised the research. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Basharat Want.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, N., Want, B. Magneto-dielectric properties of Mn-doped CoFe2O4: Yb-doped PbZrTiO3 multiferroic composites. J Mater Sci: Mater Electron 32, 5579–5593 (2021). https://doi.org/10.1007/s10854-021-05280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05280-3

Navigation