Skip to main content
Log in

Organic polymer and perovskite CdSe–CdS QDs hybrid thin film: a new model for the direct detection of light elements

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A window-less X-ray detector fabrication is a challenging job for physicists and technologists. Using a high atomic number (Z) nano-particles (NPs), such as CdSe–CdS quantum dots (QDs) in nano-form, are the most versatile nano-particles and the most suitable choice for energy-dispersive X-ray spectroscopy analysis of light elements. There is no report on the fabrication of a windowless X-ray detector by using core–shell CdSe–CdS QDs, so far as we know. We have observed the luminescence properties of CdSe/CdS core–shell QDs–cellulose hybrid thin films and characterized them. The blaze union of high photoluminescence (PL) of CdSe/CdS core–shell QDs was synthesized by a high-temperature short-time handling approach with a quantum yield of 70%. The surface, configurationally characterizations, and optical characteristics of the above thin films were examined utilizing X-ray diffraction, transmission electron microscopy, PL, scanning electron microscopy, and I–V trademark strategies. This experimental work confirmed thin films coated with QDs of core–shell CdSe–CdS which improve the PL capability of nano-crystalline cellulose. The distribution of a quantum size possesses a rigid structure in the total growth process of the entire shell during the experiment, which is indicated in the absorption spectra followed by a sharp PL peak at 630 nm. It is expected that the present study will have a good promise for X-ray-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Cotta, ACS Appl. Nano Mater. 6, 4920 (2020)

    Article  Google Scholar 

  2. V.G. Reshma, P.V. Mohanan, J. Lumin. 205, 287 (2019)

    Article  CAS  Google Scholar 

  3. A. Zhang, F. Zhang, H. Wang, L. Wang, F. Wang, Q. Lin, H. Shen, L. Songl, Opt. Express 27, 7935 (2019)

    Article  CAS  Google Scholar 

  4. S. Sadeghi, S.K. Abkenar, C.W. Ow-Yang, S. Nizamoglu, Sci. Rep. 9, 10061 (2019)

    Article  Google Scholar 

  5. C. Livache, B. Martinez, N. Goubet, C. Gréboval, J. Qu, A. Chu, S. Royer, S. Ithurria, M.G. Silly, B. Dubertret, E. Lhuillier, Nat. Commun. 10, 2125 (2019)

    Article  Google Scholar 

  6. S.B. Hafiz, M. Scimeca, A. Sahu, D.K. Ko, Nano Converg. 6, 7 (2019)

    Article  Google Scholar 

  7. K. Surana, I.T. Salisu, R.M. Mehra, B. Bhattacharya, Opt. Mater. 93, 10 (2019)

    Article  Google Scholar 

  8. A.A. Rossinelli, A. Riedinger, P.M. Gallego, P.N. Knüsel, F.V. Antolinez, D.J. Norris, Chem. Commun. 71, 9819 (2017)

    Google Scholar 

  9. X. Peng, M.C. Schlamp, A. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)

    Article  CAS  Google Scholar 

  10. X. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)

    Article  CAS  Google Scholar 

  11. M. Kaur, A. Sharma, M. Olutas, O. Erdem, A. Kumar, M. Sharma, H.V. Demir, Nanoscale Res. Lett. 13, 182 (2018)

    Article  Google Scholar 

  12. J. Sharma, R. Singh, A. Kumar, T. Singh, P. Agrawal, A. Thakur, Appl. Nanosci. 8, 359 (2018)

    Article  CAS  Google Scholar 

  13. M. Kaur, P. Singh, G. Kaur, M. Kaur, J. Sharma, M. Kumar, M. Sharma, A. Kumar, Int. J. Emerg. Technol. 10, 16 (2019)

    Article  CAS  Google Scholar 

  14. S.R. Patra, S.K. Samal, B. Mallick, Indian J. Phys. 93, 1413 (2019)

    Article  CAS  Google Scholar 

  15. S.R. Patra, S.P. Sinha, S.C. Mishra, B. Mallick, Adv. Sci. Lett. 20, 733 (2014)

    Article  CAS  Google Scholar 

  16. Nam et al., 2004 US2004\0200972 A1 (2004)

  17. S.E. Létant, T.F. Wang, Nano Lett. 6, 2877 (2006)

    Article  Google Scholar 

  18. L. Carbone, C. Nobile, M. De Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Nano Lett. 7, 2942 (2007)

    Article  CAS  Google Scholar 

  19. R. Gomes, T. Aubert, M. Cirillo, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brains, Z. Hens, Chem. Mater. 26, 1154 (2014)

    Article  Google Scholar 

  20. Y. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A.J. Hollingsworth, Am. Chem. Soc. 130, 5026 (2008)

    Article  CAS  Google Scholar 

  21. S.R. Patra, P. Pattojoshi, S.C. Mishra, B. Mallick, Indian J. Phys. 91, 377 (2017)

    Article  CAS  Google Scholar 

  22. S.R. Patra, B. Mallick, Int. J. Plast. Technol. 22, 115 (2018)

    Article  CAS  Google Scholar 

  23. S.R. Patra, S.K. Samal, B. Mallick, Sens. Lett. 15, 398 (2017)

    Article  Google Scholar 

  24. S.R. Patra, P. Pattojoshi, S.K. Samal, B. Mallick, S.C. Mishra, T.N. Tiwari, Nano Hybrids Compos. 12, 79 (2017)

    Article  Google Scholar 

  25. S.R. Patra, B. Mallick, Sens. Lett. 18, 216 (2020)

    Article  Google Scholar 

  26. S.R. Patra, B. Mallick, J. Mater. Sci. Mater. Electron. 31, 14107 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Soumya Ranjan Patra is highly grateful for experimental support from the Department of Physics and Chemistry of Nanostructures, Ghent University, Belgium, and also to B. Mallick, Institute of Physics, Bhubaneswar, India, for XRD, SEM and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Ranjan Patra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S.R., Bhuyan, R.K. Organic polymer and perovskite CdSe–CdS QDs hybrid thin film: a new model for the direct detection of light elements. J Mater Sci: Mater Electron 32, 5538–5547 (2021). https://doi.org/10.1007/s10854-021-05276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05276-z

Navigation