Skip to main content
Log in

Influence of ZnO nanoparticles on the performance of LED based on oligomer thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a set of thin films of ZnO nanoparticles doped with a conjugated oligomer {9,9,9′,9′,9″,9″-hexakis(hexyl)-2,7′;2′,7″-trifluorene} has been prepared. The optical and electrical measurements on pure oligomer, ZnO nanoparticles, and blended thin films have been investigated. The absorption spectra of the pure oligomer in thin films showed a single band at 350 nm. When the thickness was increased, there was no new band detected at the end of the spectrum. This is a strong indication that the oligomer cannot be present in the dimeric state. On the other hand, the photoluminescence (PL) spectra of the oligomer showed two distinguished peaks at 400 and 420 nm due to the monomer and excimer states, respectively. Furthermore, the results showed that the PL spectrum of the oligomer was affected by the thickness. For the blended thin films with different ratios of ZnO nanoparticles, the PL spectra showed an enhancement in intensity by increasing the concentration of ZnO nanoparticles. For the electrical properties, the addition of ZnO nanoparticles to oligomer had increased the current and luminescence. The luminescences of the pure and blend film at 10 V had reached 1000 and 4200 cd/m2, respectively; and the turn-on voltage was reduced from 10.5 to 5.8 V. The light emission in the device is due to the Auger-assisted energy up-conversion process. The lifetime of the blend’s diodes measured under standard atmospheric conditions was greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Shirakawa et al., Synthesis of electrically organic polymers:halogen derivatives of polyacetylene, (CH)X. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)

    Article  Google Scholar 

  2. C.K. Chiang et al., Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)

    Article  CAS  Google Scholar 

  3. C.K. Chiang et al., Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J. Am. Chem. Soc. 100(3), 1013–1015 (1978)

    Article  CAS  Google Scholar 

  4. A. Facchetti, Π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23(3), 733–758 (2010)

    Article  CAS  Google Scholar 

  5. X. Guo, M. Baumgarten, K. Müllen, Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 38(12), 1832–1908 (2013)

    Article  CAS  Google Scholar 

  6. T. Mikie, I. Osaka, Small-bandgap quinoid-based π-conjugated polymers. J. Mater. Chem. C (2020). https://doi.org/10.1039/D0TC01041C

    Article  Google Scholar 

  7. H. Sirringhaus et al., Two-dimensional charge transport in self-organized. High-Mobil. Conj. Polym. Nat. 401(6754), 685–688 (1999)

    CAS  Google Scholar 

  8. J.H. Burroughes et al., Light-emitting diodes based on conjugated polymers. Nature 348(6299), 539–541 (1990)

    Article  Google Scholar 

  9. J.J.M. Halls et al., Photodiodes based on polyfluorene composites: influence of morphology. Adv. Mater. 12(7), 498–502 (2000)

    Article  CAS  Google Scholar 

  10. J. Chappell et al., Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends. Nat. Mater. 2(9), 616–621 (2003)

    Article  CAS  Google Scholar 

  11. P.H. Wang et al., Synthesis of thermal-stable and Photo-crosslinkable polyfluorenes for the applications of polymer light-emitting diodes. J. Polym. Sci., Part A: Polym. Chem. 48(3), 516–524 (2010)

    Article  CAS  Google Scholar 

  12. Z. Liu, C. Lin et al., Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9(1), 83 (2020)

    Article  CAS  Google Scholar 

  13. M. Zubair et al., Improvement of solution based conjugate polymer organic light emitting diode by ZnO–graphene quantum dots. J. Mater. Sci.: Mater. Electron. 26(5), 3344–3351 (2015)

    CAS  Google Scholar 

  14. E. Taeshik, A. Eilaf, A.J. Samson, Solution-processed highly efficient blue phosphorescent polymer light-emitting diodes enabled by a new electron transport material. Adv. Mater. 22(42), 4744–4748 (2010)

    Article  CAS  Google Scholar 

  15. D. Abbaszadeh et al., Efficient polymer light-emitting diode with air-stable aluminum cathode. J. Appl. Phys. 119(9), 095503 (2016)

    Article  CAS  Google Scholar 

  16. H. Sirringhaus, Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17(20), 2411–2425 (2005)

    Article  CAS  Google Scholar 

  17. D.J. Gundlach et al., High mobility n-channel organic thin-film transistors and complementary inverters. J. Appl. Phys. 98(6), 59400O (2005)

    Article  CAS  Google Scholar 

  18. O. Inganäs et al., Recent progress in thin film organic photodiodes. Synth. Met. 121(1–3), 1525–1528 (2001)

    Article  Google Scholar 

  19. R.J. Mortimer, Organic electrochromic materials. Electrochim. Acta 44(18), 2971–2981 (1999)

    Article  CAS  Google Scholar 

  20. G. Yu et al., Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995)

    Article  CAS  Google Scholar 

  21. P. Panda et al., Charge transfer absorption for π-conjugated polymers and oligomers mixed with electron acceptors. J. Phys. Chem. B 111(19), 5076–5081 (2007)

    Article  CAS  Google Scholar 

  22. S. Barth et al., Photogeneration and recombination of charge carriers in LEDs: related organic materials. Proc. R. Soc. A 355(1725), 749–761 (1997)

    Article  CAS  Google Scholar 

  23. S.S. Sharma, K. Sharma, G.D. Sharma, Efficient bulk heterojunction photovoltaic devices based on modified PCBM. Nanotechnol. Rev. 4(5), 419–428 (2015)

    Article  CAS  Google Scholar 

  24. J.S. Shankar et al., Studies on optical characteristics of multicolor emitting MEH-PPV/ZnO hybrid nanocomposite. J. Polym.-Plast. Technol. Mater. 58(2), 148–187 (2019)

    CAS  Google Scholar 

  25. A.A. Argun, A. Cirpan, J.R. Reynolds, The first truly all-polymer electrochromic devices. Adv. Mater. 15(16), 1338–1341 (2003)

    Article  CAS  Google Scholar 

  26. A.N. Aleshin, S.R. Williams, A.J. Heeger, Transport properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Synth. Met. 94(2), 173–177 (1998)

    Article  CAS  Google Scholar 

  27. C. Soci et al., Photoconductivity of a low-bandgap conjugated polymer. Adv. Funct. Mater. 17(4), 632–636 (2007)

    Article  CAS  Google Scholar 

  28. N.T. Kemp et al., Thermoelectric power and conductivity of different types of polypyrrole. J. Polym. Sci. B: Polym. Phys. 37(9), 953–960 (1999)

    Article  CAS  Google Scholar 

  29. J. Cornil et al., Electronic and optical properties of polyfluorene and fluorene-based copolymers: a quantum-chemical characterization. J. Chem. Phys. 118(14), 6615 (2003)

    Article  CAS  Google Scholar 

  30. Q. Pei, Y. Yang, Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc. 118(31), 7416 (1996)

    Article  CAS  Google Scholar 

  31. Y. Ohmori et al., Blue electroluminescent diodes utilizing poly(alkylfluorene). Jpn. J. Appl. Phys. 30(11B), L1941 (1991)

    Article  Google Scholar 

  32. H.H. Lu et al., Excimer formation by electric field induction and side chain motion assistance in polyfluorenes. Macromolecules 38(26), 10829–10835 (2005)

    Article  CAS  Google Scholar 

  33. A.M. Assaka et al., Novel fluorine containing polyfluorenes with efficient blue electroluminescence. Polymer 45(21), 7071–7081 (2004)

    Article  CAS  Google Scholar 

  34. M. Vachaa, J. Hab, H. Sato, On the origin of excimer emission in electroluminescence and photoluminescence spectra of polyfluorenes. J. Lumin. 122(1), 620–622 (2007)

    Article  CAS  Google Scholar 

  35. R.H. Friend et al., Electroluminescence in conjugated polymers. Nature 397(6715), 121–128 (1999)

    Article  CAS  Google Scholar 

  36. M.T. Bernius, M. Inbasakaran, J. O’Brien, W. Wu, Progress with light-emitting polymers. Adv. Mater. 12(23), 1737 (2000)

    Article  CAS  Google Scholar 

  37. M. Leclerc, Polyfluorenes: twenty years of progress. J. Polym. Sci. A: Polym. Chem. 39(17), 2867–2873 (2001)

    Article  CAS  Google Scholar 

  38. U. Scherf, E. List, Semiconducting polyfluorenes-towards reliable structure-property relationships. Adv. Mater. 14(7), 477–487 (2002)

    Article  CAS  Google Scholar 

  39. N.H.A. Rahman et al., Electroluminescence behavior of MEH-PPV based organic light emitting diode, in RSM2013 Proceedings, 2013, Langkawi, Malaysia, pp. 265–268

  40. A. Alyamani et al., Spectral, electrical and morphological properties of spin coated MEH-PPV and cresyl violet blended thin films for a light emitting diode. Optik 127(4), 2331–2335 (2016)

    Article  CAS  Google Scholar 

  41. L. Yanwei et al., Highly efficient, solution-processed organic light-emitting diodes based on thermally activated delayed-fluorescence emitter with a mixed polymer interlayer. ACS Appl. Energy Mater. 1(2), 543–551 (2018)

    Article  CAS  Google Scholar 

  42. J. Yang et al., High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole. Macromolecules 37(4), 1211–1218 (2004)

    Article  CAS  Google Scholar 

  43. ChP Kuo et al., Tunable electrofluorochromic device from electrochemically controlled complementary fluorescent conjugated polymer films. ACS Appl. Mater. Interfaces. 6(20), 17402–17409 (2014)

    Article  CAS  Google Scholar 

  44. H. Qiong et al., Synthesis and electroluminescent properties of high-efficiency saturated red emitter based on copolymers from fluorene and 4, 7-di (4-hexylthien-2-yl)-2,1,3-benzothiadiazole. Macromolecules 37(17), 6299–6305 (2004)

    Article  CAS  Google Scholar 

  45. R. Tian, Y. Mo, J. Peng, Efficient polymer light-emitting diodes with violet blue emission based on blends of PSiF6-PPP and PSiFC6C6. Chin. Sci. Bull. 51(8), 2805–2808 (2006)

    Article  CAS  Google Scholar 

  46. T. Virgili et al., Deep blue light amplification from a novel triphenylamine functionalized fluorene thin film. Molecules 25(1), 1–11 (2019)

    Article  CAS  Google Scholar 

  47. N. Mustapha, Z. Fekkai, K. Ibnaouf, Improved performance of organic light—emitting diodes based on oligomer thin films with graphene. J. Electron. Mater. 49(2B), 1–8 (2020)

    Google Scholar 

  48. N. Mustapha, Z. Fekkai, A. Alkaoud, Enhanced efficiency of organic solar cells based on (MEH-PPV) with graphene and quantum dots. Optik 127(5), 2755–2760 (2015)

    Article  CAS  Google Scholar 

  49. K.W. Jeong et al., Enhancing the electroluminescence of OLEDs by using ZnO nanoparticle electron transport layers that exhibit the Auger electron effect. Mol. Cryst. Liq. Cryst. 663(1), 61–70 (2018)

    Article  CAS  Google Scholar 

  50. N. Mustapha, M.S. AlSalhi, S. Prasad, Energy transfer-enhanced external power conversion efficiency in blended polymeric thin film solar devices. J. Mater. Sci.: Mater. Electron. 30(8), 7840–7849 (2019)

    CAS  Google Scholar 

  51. N.K. Cuong, N.Q. Khanh, Photoluminescence and I–V characteristics of blended conjugated polymers/ZnO nanoparticles. VNU J. Sci.: Math. Phys. 32(1), 52–60 (2016)

    Google Scholar 

  52. I. Musa et al., Investigations of optical properties of MEH-PPV/ZnO nanocomposites by photoluminescence spectroscopy. Synth. Met. 162(s 19-20), 1756–1761 (2012)

    Article  CAS  Google Scholar 

  53. M.V.M. Rao et al., J. Electrochem. Soc. 157(8), H832–H836 (2010)

    Article  CAS  Google Scholar 

  54. M. Dahnoun et al., Structural, optical and electrical properties of zinc oxide thin films deposited by sol-gel spin coating technique. Optik 134, 53–59 (2017)

    Article  CAS  Google Scholar 

  55. http://www.adsdyes.com/products/ADS038FO.html

  56. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Met. 1, 23 (1953)

    Article  Google Scholar 

  57. N.V. Konoshchuk, L.N. Grebinskaya, V.D. Pokhodenko, Effect of the method of production of the inorganic matrix on the spectral characteristics of hybrid ZnO/MEH-PPV nanocomposites. Theor. Exp. Chem. 44(6), 339–344 (2008)

    Article  CAS  Google Scholar 

  58. H. Geng et al., A facile route for preparation of conjugated polymer functionalized inorganic semiconductors and direct application in hybrid photovoltaic devices. Sol. Energy Mater. Sol. Cells 94(7), 1293–1299 (2010)

    Article  CAS  Google Scholar 

  59. L. Qian et al., Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today 5(5), 384–389 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Imam Mohammad Ibn Saud Islamic University for the partial financial support of this project under contract number (341201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mustapha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustapha, N., Rafea, M.A., Aldaghri, O. et al. Influence of ZnO nanoparticles on the performance of LED based on oligomer thin films. J Mater Sci: Mater Electron 32, 5473–5481 (2021). https://doi.org/10.1007/s10854-021-05269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05269-y

Navigation