Skip to main content
Log in

A facile preparation of ZnFe2O4–CuO-N/B/RGO and ZnFe2O4–CuO–C3N4 ternary heterojunction nanophotocatalyst: characterization, biocompatibility, photo-Fenton-like degradation of MO and magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To improve the low photocatalytic efficiency, powerful UV light activation, and facile electron transport of ZnFe2O4–CuO the combination of different C3N4 and N/B/RGO nanosheets in ZnFe2O4–CuO–C3N4 and ZnFe2O4–CuO-N/B/RGO ternary nanoheterojunction fabricated that lead to decrease recombination of electron/hole pairs and high photocatalytic efficiency for degradation of MO organic pollutants. The ZnFe2O4, ZnFe2O4-N/B/RGO, CuO-N/B/RGO, ZnFe2O4–CuO, ZnFe2O4–CuO-N/RGO, ZnFe2O4–CuO-B/RGO, ZnFe2O4–CuO-RGO, ZnFe2O4–CuO-N/B/RGO and ZnFe2O4–CuO–C3N4 photocatalysts were fabricated by sol–gel technique using melamine, zinc nitrate, ferric nitrate and copper nitrate hexahydrate as precursors. The prepared ZnFe2O4–CuO–C3N4 photocatalysts have a narrower bandgap than that of ZnFe2O4–CuO-N/B/RGO ternary heterojunction, resulting in higher photocatalytic activity for Fenton-type photodecomposition of methyl orange (MO). The activity of the compounds as a photocatalyst can be attributed to an electron transfer process on the surface of the photocatalyst, where the ZnFe2O4–CuO–C3N4 is a powerful electron donor and electron acceptor for the oxidized MO under ultra-violet (UV) light irradiation. ZnFe2O4–CuO–C3N4 ternary heterojunction photocatalyst show a red shift (lowest bandgap) in absorption and excellent photocatalytic degradation of MO. The particle sizes of ZnFe2O4 and CuO nanoparticles (NPs) were in the ranges of ~ 650–750 and ~ 50–150 nm, respectively. The CuO and ZnFe2O4 samples were displayed spherical and cubic morphology in FESEM images, respectively. Among the as-prepared nanostructures ZnFe2O4–CuO–C3N4 show the highest photocatalytic activity and eliminate 95.84% (80 min) of methyl orange under UV light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References:

  1. M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, A.F. Shojaie, M.D. Rafiee, J. Mater. Sci.: Mater. Electron. 27, 11940 (2016)

    CAS  Google Scholar 

  2. M. Rostami, RSC Adv. 7, 43424 (2017)

    Article  CAS  Google Scholar 

  3. M. Rostami, R.M. Zamani, K.M. Aghajanzadeh, H. Danafar, J. Pharm. Invest. 48, 657 (2018)

    Article  CAS  Google Scholar 

  4. P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, J. Mater. Chem. 22, 17485 (2012)

    Article  CAS  Google Scholar 

  5. F. Gandomi, A. Sobhani-Nasab, S. Pourmasoud, M. Eghbali-Arani, M. Rahimi-Nasrabadi, J. Mater. Sci.: Mater. Electron. 31, 10553 (2020)

    CAS  Google Scholar 

  6. R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Appl. Catal. B 181, 352 (2016)

    Article  CAS  Google Scholar 

  7. J. Sui, C. Zhang, D. Hong et al., J. Mater. Chem. 22, 13674 (2012)

    Article  CAS  Google Scholar 

  8. Y. Fu, X. Wang, Ind. Eng. Chem. Res. 50, 7210 (2011)

    Article  CAS  Google Scholar 

  9. Y. Duan, Mater. Res. Bull. 105, 68 (2018)

    Article  CAS  Google Scholar 

  10. S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami et al., J. Mater. Sci.: Mater. Electron. 30, 6902 (2019)

    CAS  Google Scholar 

  11. M. Ghanbari, M. Salavati-Niasari, Inorg. Chem. 57, 11443 (2018)

    Article  CAS  Google Scholar 

  12. Y. Yao, L. Wang, L. Sun et al., Chem. Eng. Sci. 101, 424 (2013)

    Article  CAS  Google Scholar 

  13. M.A. Marsooli, M.R. Nasrabadi, M. Fasihi-Ramandi et al., Catalysts 10, 494 (2020)

    Article  CAS  Google Scholar 

  14. Y. Yang, J.J. Pignatello, J. Ma, W.A. Mitch, Environ. Sci. Technol. 48, 2344 (2014)

    Article  CAS  Google Scholar 

  15. J.J. Teo, Y. Chang, H.C. Zeng, Langmuir 22, 7369 (2006)

    Article  CAS  Google Scholar 

  16. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, A.A. Davoudi-Dehaghani, S.S. Hajimirsadeghi, M.M. Zahedi, CrystEngComm 15, 4077 (2013)

    Article  CAS  Google Scholar 

  17. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, F. Ahmadi, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 29, 9442 (2018)

    CAS  Google Scholar 

  18. H. Yu, J. Yu, S. Liu, S. Mann, Chem. Mater. 19, 4327 (2007)

    Article  CAS  Google Scholar 

  19. A. Abdulkarem, A. Aref, A. Abdulhabeeb, Y.-F. Li, Y. Yu, J. Alloy Compd. 560, 132 (2013)

    Article  CAS  Google Scholar 

  20. J.B. Reitz, E.I. Solomon, J. Am. Chem. Soc. 120, 11467 (1998)

    Article  CAS  Google Scholar 

  21. H. Wang, J.-Z. Xu, J.-J. Zhu, H.-Y. Chen, J. Cryst. Growth 244, 88 (2002)

    Article  CAS  Google Scholar 

  22. A. Sobhani-Nasab, S. Behvandi, M.A. Karimi et al., Ceram. Int. 45, 17847 (2019)

    Article  CAS  Google Scholar 

  23. J. Hassanzadeh, B.R. Moghadam, A. Sobhani-Nasab, F. Ahmadi, M. Rahimi-Nasrabadi, Spectrochim. Acta Part A 214, 451 (2019)

    Article  CAS  Google Scholar 

  24. Y. Orooji, M. Ghanbari, O. Amiri, M. Salavati-Niasari, J. Hazard. Mater. 389, 122079 (2020)

    Article  CAS  Google Scholar 

  25. M. Jourshabani, Z. Shariatinia, A. Badiei, J. Mater. Sci. Technol. 34, 1511 (2018)

    Article  Google Scholar 

  26. M. Jourshabani, Z. Shariatinia, A. Badiei, Appl. Surf. Sci. 427, 375 (2018)

    Article  CAS  Google Scholar 

  27. M. Jourshabani, Z. Shariatinia, A. Badiei, J. Mol. Liq. 248, 688 (2017)

    Article  CAS  Google Scholar 

  28. M. Jourshabani, Z. Shariatinia, A. Badiei, J. Colloid Interface Sci. 507, 59 (2017)

    Article  CAS  Google Scholar 

  29. M. Rostami, M. Hamadanian, M. Rahimi-Nasrabadi, M.R. Ganjali, Ionics 25, 1869 (2019)

    Article  CAS  Google Scholar 

  30. M. Hamadanian, M. Rostami, V. Jabbari, J. Mater. Sci.: Mater. Electron. 28, 15637 (2017)

    CAS  Google Scholar 

  31. M.H. Ghanbari, F. Shahdost-fard, A. Khoshroo et al., Microchim. Acta 186, 438 (2019)

    Article  CAS  Google Scholar 

  32. M.H. Ghanbari, A. Khoshroo, H. Sobati, M.R. Ganjali, M. Rahimi-Nasrabadi, F. Ahmadi, Microchem. J. 147, 198 (2019)

    Article  CAS  Google Scholar 

  33. M.H. Ghanbari, F. Shahdost-Fard, H. Salehzadeh, M.R. Ganjali, M. Iman, M. Rahimi-Nasrabadi, F. Ahmadi, Microchim. Acta 186, 641 (2019)

    Article  CAS  Google Scholar 

  34. M. Rostami, S. Nayebossadr, S. Mozaffari et al., Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-020-10572-y

    Article  Google Scholar 

  35. F. Tavakoli, A. Badiei, F. Yazdian, G.M. Ziarani, J. Ghasemi, J. Cluster Sci. 28, 2979 (2017)

    Article  CAS  Google Scholar 

  36. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Appl. Surf. Sci. 423, 1025 (2017)

    Article  CAS  Google Scholar 

  37. M. Rostami, J. Mol. Struct. 1185, 191 (2019)

    Article  CAS  Google Scholar 

  38. P. Rani, V. Jindal, RSC Adv. 3, 802 (2013)

    Article  CAS  Google Scholar 

  39. H. Mousavi, R. Moradian, Solid State Sci. 13, 1459 (2011)

    Article  CAS  Google Scholar 

  40. L. Sun, L. Wang, C. Tian et al., Rsc Adv. 2, 4498 (2012)

    Article  CAS  Google Scholar 

  41. M. Zamani, M. Rostami, M. Aghajanzadeh, H.K. Manjili, K. Rostamizadeh, H. Danafar, J. Mater. Sci. 53, 1634 (2018)

    Article  CAS  Google Scholar 

  42. Y. Zhu, X. Kong, D.-B. Cao, J. Cui, Y. Zhu, Y.-W. Li, ACS Catal. 4, 3675 (2014)

    Article  CAS  Google Scholar 

  43. M. Hafezi, M. Rostami, A. Hosseini, et al. (2020) J. Mol. Liq. 114875.

  44. M. Amiri, T. Gholami, O. Amiri et al., J. Alloy Compd. 849, 156604 (2020)

    Article  CAS  Google Scholar 

  45. M. Ranjeh, F. Beshkar, O. Amiri, M. Salavati-Niasari, H. Moayedi, J. Alloy Compd. 815, 152451 (2020)

    Article  CAS  Google Scholar 

  46. H. Teymourinia, M. Salavati-Niasari, O. Amiri, Composite B 172, 785 (2019)

    Article  CAS  Google Scholar 

  47. F. Gandomi, S.M. Peymani-Motlagh, M. Rostami et al., J. Mater. Sci.: Mater. Electron. 30, 19691 (2019)

    CAS  Google Scholar 

  48. M.H. Ghanbari, F. Shahdost-Fard, M. Rostami et al., Microchim. Acta 186, 698 (2019)

    Article  CAS  Google Scholar 

  49. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776 (2015)

    CAS  Google Scholar 

  50. E. Esmaeili, M. Salavati-Niasari, F. Mohandes, F. Davar, H. Seyghalkar, Chem. Eng. J. 170, 278 (2011)

    Article  CAS  Google Scholar 

  51. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, J. Mater. Sci.: Mater. Electron. 27, 13294 (2016)

    CAS  Google Scholar 

  52. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Chem. Eng. J. 146, 498 (2009)

    Article  CAS  Google Scholar 

  53. M. Ghiyasiyan-Arani, M. Salavati-Niasari, Ind. Eng. Chem. Res. 58, 23057 (2019)

    Article  CAS  Google Scholar 

  54. M.S. Mohammadnia, E.M. Khosrowshahi, E. Naghian et al., Microchem. J. 159, 105470 (2020)

    Article  CAS  Google Scholar 

  55. H. Khojasteh, M. Salavati-Niasari, F.S. Sangsefidi, J. Alloy Compd. 746, 611 (2018)

    Article  CAS  Google Scholar 

  56. H. Khojasteh, H. Safajou, S. Mortazavi-Derazkola, M. Salavati-Niasari, K. Heydaryan, M. Yazdani, J. Clean. Prod. 229, 1139 (2019)

    Article  CAS  Google Scholar 

  57. M. Rostami, M. Aghajanzadeh, M. Zamani, H.K. Manjili, H. Danafar, Res. Chem. Intermed. 44, 1889 (2018)

    Article  CAS  Google Scholar 

  58. E. Sohouli, M. Ghalkhani, M. Rostami, M. Rahimi-Nasrabadi, F. Ahmadi, Mater. Sci. Eng. C 117, 111300 (2020)

    Article  CAS  Google Scholar 

  59. S.M. Peymani-Motlagh, N. Moeinian, M. Rostami et al., J. Rare Earths 37, 1288 (2019)

    Article  Google Scholar 

  60. M. Baladi, M. Ghanbari, M. Valian, M. Salavati-Niasari, Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-020-11324-8

    Article  Google Scholar 

  61. D. Ayodhya, G. Veerabhadram, J. Mol. Struct. 1186, 423 (2019)

    Article  CAS  Google Scholar 

  62. M. Faisal, A.A. Ismail, F.A. Harraz et al., J. Mol. Struct. 1173, 428 (2018)

    Article  CAS  Google Scholar 

  63. Y. Ding, L. Zhu, N. Wang, H. Tang, Appl. Catal. B 129, 153 (2013)

    Article  CAS  Google Scholar 

  64. A.D. Bokare, W. Choi, J. Hazard. Mater. 275, 121 (2014)

    Article  CAS  Google Scholar 

  65. A.N. Pham, G. Xing, C.J. Miller, T.D. Waite, J. Catal. 301, 54 (2013)

    Article  CAS  Google Scholar 

  66. X. Zhang, Y. Ding, H. Tang, X. Han, L. Zhu, N. Wang, Chem. Eng. J. 236, 251 (2014)

    Article  CAS  Google Scholar 

  67. W. Zhao, C. Liang, B. Wang, S. Xing, ACS Appl. Mater. Interfaces 48, 41927–41936 (2017)

    Google Scholar 

  68. A. Behera, D. Kandi, S.M. Majhi, S. Martha, K. Parida, Beilstein J. Nanotechnol. 9, 436 (2018)

    Article  CAS  Google Scholar 

  69. S. Sonia, S. Poongodi, P.S. Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Mater. Sci. Semicond. Process. 30, 585 (2015)

    Article  CAS  Google Scholar 

  70. M. Darvishi, G. Mohseni-Asgerani, J. Seyed-Yazdi, Surf. Interfaces 7, 69 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahimi-Nasrabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, M., Sharafi, P., Mozaffari, S. et al. A facile preparation of ZnFe2O4–CuO-N/B/RGO and ZnFe2O4–CuO–C3N4 ternary heterojunction nanophotocatalyst: characterization, biocompatibility, photo-Fenton-like degradation of MO and magnetic properties. J Mater Sci: Mater Electron 32, 5457–5472 (2021). https://doi.org/10.1007/s10854-021-05268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05268-z

Navigation