Skip to main content
Log in

Freeze casting of lamellar-structured porous lead-free (Na0.52K0.48)(Nb0.95Sb0.05)O3 piezoceramic with remarkable enhancement in piezoelectric voltage constant and hydrostatic figure of merit

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The study reports the development of lamellar-structured, porous lead-free (Na0.52K0.48)(Nb0.95Sb0.05)O3 ceramics, abbreviated as NKNS, using the freeze-casting method with water as pore-forming agent. The effect of directional porosity on the microstructure, dielectric, and piezoelectric properties of the lead-free porous material is investigated. Furthermore, the effects of conventional and microwave sintering on microstructure and piezoelectric properties have also been analyzed. In addition, the study compares conventional and corona poling too. The results depicted no deterioration of piezoelectric properties (d33:130 pC/N), despite being ~ 50% porosity, along with reasonably good hydrostatic piezoelectric strain coefficient (dh: 60pC/N). The samples exhibited hydrostatic piezoelectric voltage coefficient (gh) of 58.70 mV.m/N providing a significant value of the hydrostatic figure of merit (HFOM = dh∙gh: 3522 × 10–15 Pa−1) for the porous NKNS ceramic which is nearly 39 times more than the dense ceramic. Considering its unique advantages such as environmental friendly, less dense, wide performance range with enhanced figure of merit, the lamellar-structured NKNS ceramic is a promising material for sensor and transducer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    Article  Google Scholar 

  2. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London and New York, 1971).

    Google Scholar 

  3. E.U. Directive, Off. J. Eur. Union L37, 19 (2002)

    Google Scholar 

  4. W. Bai, L. Wang, P. Zheng, F. Wen, L. Li, J. Zhai, Z. Ji, Ceram. Int. 44, 16040 (2018)

    Article  CAS  Google Scholar 

  5. G. Hernandez-Cuevas, J.R. Leyva Mendoza, P.E. García-Casillas, C.A. Rodríguez González, J.F. Hernandez-Paz, G. Herrera-Pérez, L. Fuentes-Cobas, S.D. del Torre, O. Raymond-Herrera, H. Camacho-Montes, J. Adv. Ceram. (2019). https://doi.org/10.1007/s40145-019-0314-8

    Article  Google Scholar 

  6. K. Boumchedda, M. Hamadi, G. Fantozzi, J. Eur. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.124

    Article  Google Scholar 

  7. A. Yang, C.A. Wang, R. Guo, Y. Huang, C.W. Nan, J. Am. Ceram. Soc. (2010). https://doi.org/10.1111/j.1551-2916.2009.03585.x

    Article  Google Scholar 

  8. T. Xu, C.A. Wang, J. Am. Ceram. Soc. (2014). https://doi.org/10.1111/jace.12793

    Article  Google Scholar 

  9. M. Xie, Y. Zhang, M.J. Krasny, C. Bowen, H. Khanbareh, N. Gathercole, Energy Environ. Sci. (2018). https://doi.org/10.1039/c8ee01551a

    Article  Google Scholar 

  10. Y. Zhang, L. Chen, J. Zeng, K. Zhou, D. Zhang, Mat. Sci. Eng. (2014). https://doi.org/10.1016/j.msec.2014.02.022

    Article  Google Scholar 

  11. S.H. Lee, S.H. Jun, H.E. Kim, J. Am. Ceram. Soc. (2007). https://doi.org/10.1111/j.1551-2916.2007.01834.x

    Article  Google Scholar 

  12. A.N. Rybyanets, Ferroelectrics (2011). https://doi.org/10.1080/00150193.2011.594751

    Article  Google Scholar 

  13. B.P. Kumar, H.H. Kumar, D.K. Kharat, J. Mater. Sci. Mater. Electron. (2005). https://doi.org/10.1007/s10854-005-3746-6

    Article  Google Scholar 

  14. C.R. Bowen, A. Perry, A.C.F. Lewis, H. Kara, J. Eur. Ceram. Soc. (2004). https://doi.org/10.1016/S0955-2219(03)00194-8

    Article  Google Scholar 

  15. H. Kara, R. Ramesh, R. Stevens, C.R. Brown, IEEE Trans. Ultrasound Ferroelectr. Freq Control (2003). https://doi.org/10.1109/TUFFC.2003.1193622

    Article  Google Scholar 

  16. D.P. Skinner, R.E. Newnham, L.E. Cross, Mater. Res. Bull. (1978). https://doi.org/10.1016/0025-5408(78)90185-X

    Article  Google Scholar 

  17. R. Guo, C.A. Wang, A. Yang, J. Am. Ceram. Soc. (2011). https://doi.org/10.1111/j.1551-2916.2010.04294.x

    Article  Google Scholar 

  18. B.P. Kumar, B. Rawal, K.M. Rajan, Def. Sci. J. (2018). https://doi.org/10.14429/dsj.68.12315

    Article  Google Scholar 

  19. M. Allahverdi, S.C. Danforth, M. Jafari, A. Safari, J. Eur. Ceram. Soc. (2001). https://doi.org/10.1016/S0955-2219(01)00047-4

    Article  Google Scholar 

  20. R.E. Newnham, D.P. Skinner, K.A. Klicker, A.S. Bhalia, B.R. Hardiman, T.R. Gururaja, Ferroelectrics (1980). https://doi.org/10.1080/00150198008226063

    Article  Google Scholar 

  21. E.D. Pinheiro, T. Deivarajan, Acta Phys. Pol. A (2019). https://doi.org/10.12693/AphysPolA.136.555

    Article  Google Scholar 

  22. T. Xu, C.A. Wang, Mat. Des. (2016). https://doi.org/10.1016/j.matdes.2015.11.101

    Article  Google Scholar 

  23. Y. Zhang, Y. Bao, D. Zhang, C.R. Bowen, J. Am. Ceram. Soc. (2015). https://doi.org/10.1111/j.jace13797

    Article  Google Scholar 

  24. Q. Wang, X. Chen, J. Zhu, B.W. Darvell, Z. Chen, Mater. Lett. (2008). https://doi.org/10.1016/j.matlet.2008.03.024

    Article  Google Scholar 

  25. Q. Wang, Q. Chen, J. Zhu, C. Huang, B.W. Darvell, Z. Chen, Mater. Chem. Phys. (2008). https://doi.org/10.1016/j.matchemphys.2007.12.022

    Article  Google Scholar 

  26. Q. Wang, J. Yang, W. Zhang, R. Khoie, Y.M. Li, J.G. Zhu, Z.G. Chen, Int. J. Oral Sci. (2009). https://doi.org/10.4248/ijos.09005

    Article  Google Scholar 

  27. T. Xu, C.A. Wang, J. Eur. Ceram. Soc. (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.032

    Article  Google Scholar 

  28. J.I. Roscow, Y. Zhang, M.J. Kraśny, R.W.C. Lewis, J. Taylor, C.R. Bowen, J. Phys. D: Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aabc81

    Article  Google Scholar 

  29. R. Guo, J. Roscow, C.R. Bowen, H. Luo, Y. Huang, Y. Ma, K. Zhou, D. Zhang, J. Mater. Chem. A (2020). https://doi.org/10.1039/C9TA11360F

    Article  Google Scholar 

  30. A.N. Reznichenko, M.A. Lugovaya, E.I. Petrova, N.A. Shvetsova, A.N. Rybyanets, Ferroelectrics (2019). https://doi.org/10.1080/00150193.2019.1570018

    Article  Google Scholar 

  31. Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, J. Mater. Chem. A (2017). https://doi.org/10.1039/C7TA00967D

    Article  Google Scholar 

  32. F. Bouville, E. Maire, S. Meille, B.V. Moortèle, A.J. Stevenson, S. Deville, Nat. Mater. (2014). https://doi.org/10.1038/nmat3915

    Article  Google Scholar 

  33. B. Rawal, N.N. Wathore, B. Praveenkumar, H.S. Panda, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7553-7

    Article  Google Scholar 

  34. H.S. Panda, B. Rawal, N.N. Wathore, B. Praveenkumar, J. Eur. Ceram Soc. (2019). https://doi.org/10.1007/s10832-019-00179-2

    Article  Google Scholar 

  35. G. Liu, PhD Thesis, The University of Birmingham, (2011) pp. 40–41

  36. M.R. Bafandeh, R. Gharahkhani, M.H. Abbasi, A. Saidi, J.S. Lee, H.S. Han, J. Eur. Ceram. Soc. (2014). https://doi.org/10.1007/s10832-014-9951-z

    Article  Google Scholar 

  37. D.Y. Jeong, S.H. Lee, H.C. Song, K.H. Choi, J.H. Cho, J. Kor. Phys. Soc. (2011). https://doi.org/10.3938/jkps.58.663

    Article  Google Scholar 

  38. H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. (2006). https://doi.org/10.1016/j.jeurceramsoc.2004.11.022

    Article  Google Scholar 

  39. C. Galassi, J. Eur. Ceram. Soc. 26, 2951 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.02.011

    Article  CAS  Google Scholar 

  40. W. Liu, L. Lv, Y. Li, Y. Wang, J. Wang, C. Xue, Y. Dong, J. Yang, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.02.079

    Article  Google Scholar 

  41. R. Guo, C.A. Wang, A.K. Yang, J.T. Fu, J. Appl. Phys. (2010). https://doi.org/10.1063/1.3525056

    Article  Google Scholar 

  42. A. Yang, C.A. Wang, R. Guo, Y. Huang, C.W. Nan, Ceram. Int. (2010). https://doi.org/10.1016/j.ceramint.2009.09.022

    Article  Google Scholar 

  43. Y. Zhang, J. Roscow, M. Xie, C. Bowen, J. Eur. Ceram. Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.067

    Article  Google Scholar 

  44. B.P. Kumar, H.H. Kumar, D.K. Kharat, Bull. Mater. Sci. (2005). https://doi.org/10.1007/BF02711235

    Article  Google Scholar 

  45. E. Roncari, C. Galassi, F. Craciun, C. Capiani, A. Piancastelli, J. Eur. Ceram. Soc. (2001). https://doi.org/10.1016/S0955-2219(00)00208-9

    Article  Google Scholar 

  46. H.T. Naeem, Mater. Today. Proc. (2020). https://doi.org/10.1016/j.matpr.2019.09.184

    Article  Google Scholar 

  47. S. Marselli, V. Pavia, C. Galassi, E. Roncari, F. Craciun, G. Guidarelli, J. Accoust. Soc. Am. (1999). https://doi.org/10.1121/1.427091

    Article  Google Scholar 

  48. T. Zeng, X.L. Dong, H. Chen, Y.L. Wang, Mater. Sci. Eng. B. (2006). https://doi.org/10.1016/j.mseb.2006.04.009

    Article  Google Scholar 

  49. T. Zeng, X.L. Dong, S.T. Chen, H. Yang, Ceram. Int. (2007). https://doi.org/10.1016/j.ceramint.2005.09.022

    Article  Google Scholar 

  50. Y.C. Chen, S. Wu, Ceram. Int. (2004). https://doi.org/10.1016/S0272-8842(03)00064-6

    Article  Google Scholar 

  51. C. Chen, Y. Zhu, J. Ji, F. Cai, Y. Zhang, N. Zhang, A. Wang, Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aaabe2

    Article  Google Scholar 

  52. G. Liu, T.W. Button, D. Zhang, J. Eur. Ceram. Soc. (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.05.043

    Article  Google Scholar 

  53. Y. Zhang, M. Xie, J. Roscow, C. Bowen, Mater. Res. Bull. (2018). https://doi.org/10.1016/j.materresbull.2018.08.031

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to The Director, Armament Research and Development Establishment, Pune and Vice-Chancellor, Defence Institute of Advanced Technology, Pune, for extending their support for this work. Also, financial support from DRDO as SRF fellowship is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Praveen Kumar or Himanshu Sekhar Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, P., Seth, S., Rawal, B. et al. Freeze casting of lamellar-structured porous lead-free (Na0.52K0.48)(Nb0.95Sb0.05)O3 piezoceramic with remarkable enhancement in piezoelectric voltage constant and hydrostatic figure of merit. J Mater Sci: Mater Electron 32, 5393–5403 (2021). https://doi.org/10.1007/s10854-021-05262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05262-5

Navigation