Skip to main content

Advertisement

Log in

Integration of Fe3O4 nanospheres and micropyramidal textured silicon wafer with improved photoelectrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon (Si)-based composites have attracted extensive attention for photoelectrochemical (PEC) application. Herein, micropyramidal textured Si wafer was constructed by wet chemical etching method. Hydrothermally synthesized Fe3O4 nanospheres were further deposited on the micropyramids by a simple dip-coating approach. The integrated Fe3O4 nanospheres and Si micropyramids (denoted as Fe3O4@SiMPs) revealed 20 times of higher PEC efficiency than planar Si wafer, without obvious photocurrent decay and crystalline structure change during chronoamperometry test. The greatly enhanced PEC performance of Fe3O4@SiMPs is largely attributed to the seamless integration of Si micropyramids and Fe3O4 nanospheres. The micropyramidal textured structure can enhance light absorption by reducing the surface reflectance and enhancing the light trapping effect. The micropyramids and Fe3O4 nanospheres on the surface of planar Si wafer offer more specific surface area for the contact of electrode with electrolyte. The Fe3O4 nanospheres not only protect the micropyramids from corrosion, but also accelerate the PEC kinetics by promoting charge transfer between the electrode and the electrolyte. This study can inspire the optimal design of Si wafer-based nanocomposites as efficient PEC catalysts for overall water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. H. Wu, H.L. Tan, C.Y. Toe et al., Adv. Mater. 32, 1904717 (2019)

    Google Scholar 

  2. Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48, 2109 (2019)

    CAS  Google Scholar 

  3. W. Xiong, F. Huang, R.-Q. Zhang, Sustain. Energy Fuels 4, 485 (2020)

    CAS  Google Scholar 

  4. M. Tayebi, B.-K. Lee, Renew. Sustain. Energy Rev. 111, 332 (2019)

    CAS  Google Scholar 

  5. Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6, 1543 (2020)

    CAS  Google Scholar 

  6. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    CAS  Google Scholar 

  7. K. Rahimi, M. Moradi, R. Dehghan, A. Yazdani, Mater. Lett. 234, 134 (2019)

    CAS  Google Scholar 

  8. H. Wu, T.H. Tan, R. Liu, H.Y. Hsu, Y.H. Ng, Sol. RRL (2020). https://doi.org/10.1002/solr.202000423

    Article  Google Scholar 

  9. H. Hou, H. Liu, F. Gao et al., Electrochim. Acta 283, 497 (2018)

    CAS  Google Scholar 

  10. L. Li, S. Xiao, R. Li et al., ACS Appl. Energy Mater. 1, 6871 (2018)

    CAS  Google Scholar 

  11. K. Song, F. Gao, W. Yang, E. Wang, Z. Wang, H. Hou, ChemElectroChem 5, 322 (2018)

    CAS  Google Scholar 

  12. J. Prakash, U. Prasad, X. Shi, X. Peng, B. Azeredo, A.M. Kannan, J. Power Sources 448, 227418 (2020)

    CAS  Google Scholar 

  13. S. Xu, D. Fu, K. Song et al., Chem. Eng. J. 349, 368 (2018)

    CAS  Google Scholar 

  14. Z. Ma, K. Song, L. Wang et al., ACS Appl. Mater. Int. 11, 889 (2018)

    Google Scholar 

  15. L. Wang, Y. Tong, J. Feng et al., Sustain. Mater. Technol. 19, e00089 (2019)

    CAS  Google Scholar 

  16. H. Guan, S. Zhang, X. Cai et al., J. Mater. Chem. A 7, 2560 (2019)

    CAS  Google Scholar 

  17. H. Wu, Z. Zheng, Y. Tang et al., Sustain. Mater. Technol. 18, e00075 (2018)

    CAS  Google Scholar 

  18. H. Wu, Z. Zheng, C.Y. Toe, X. Wen, Y.H. Ng, J. Mater. Chem. A 8, 5638 (2020)

    CAS  Google Scholar 

  19. S. Jing, H. Jiang, Y. Hu, C. Li, J. Mater. Chem. A 2, 16360 (2014)

    CAS  Google Scholar 

  20. K. Sun, S. Shen, Y. Liang, P.E. Burrows, S.S. Mao, D. Wang, Chem. Rev. 114, 8662 (2014)

    CAS  Google Scholar 

  21. M.F. Lichterman, K. Sun et al., Catal. Today 262, 11 (2016)

    CAS  Google Scholar 

  22. C.-J. Chen, K.-C. Yang, C.-W. Liu et al., Nano Energy 32, 422 (2017)

    CAS  Google Scholar 

  23. J. Yan, S. Wu, X. Zhai, X. Gao, X. Li, J. Power Sources 342, 460 (2017)

    CAS  Google Scholar 

  24. J. Ji, W. Zhang, H. Zhang et al., J. Mater. Sci-Mater. Electron. 24, 3474 (2013)

    CAS  Google Scholar 

  25. X. Li, W. Lu, W. Dong et al., Nanoscale 5, 5257 (2013)

    CAS  Google Scholar 

  26. M.K. Hossain, B. Salhi, A. Mukhaimar, Plasmonics (2020). https://doi.org/10.1007/s11468-020-01250-3

    Article  Google Scholar 

  27. F.J. Wendisch, M. Abazari, H. Mahdavi et al., ACS Appl. Mater. Int. 12, 13140 (2020)

    Google Scholar 

  28. B. Yang, M. Lee, Microelectron. Eng. 130, 52 (2014)

    CAS  Google Scholar 

  29. J. Yang, K. Walczak, E. Anzenberg et al., J. Am. Chem. Soc. 136, 6191 (2014)

    CAS  Google Scholar 

  30. Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285 (2011)

    CAS  Google Scholar 

  31. L.W. Veldhuizen, W.J.C. Vijselaar, H.A. Gatz, J. Huskens, R.E.I. Schropp, Thin Solid Films 635, 66 (2017)

    CAS  Google Scholar 

  32. M.T. Mayer, C. Du, D. Wang, J. Am. Chem. Soc. 134, 12406 (2012)

    CAS  Google Scholar 

  33. H. Cao, Y. Bai, L. Qiao, Optik 126, 2643 (2015)

    CAS  Google Scholar 

  34. X. Gao, S. Wu, J. Yan, X. Zhai, X. Li, ACS Appl. Mater. Int. 8, 30072 (2016)

    CAS  Google Scholar 

  35. K. Jun, Y.S. Lee, T. Buonassisi, J.M. Jacobson, Angew. Chem. Int. Ed. 51, 423 (2012)

    CAS  Google Scholar 

  36. Y.W. Chen, J.D. Prange, S. Dühnen et al., Nat. Mater. 10, 539 (2011)

    CAS  Google Scholar 

  37. Y. Hu, Y. Luo, S. Liu et al., Semicond. Sci. Technol. 35, 045009 (2020)

    CAS  Google Scholar 

  38. G. Paulraj, P.S. Venkatesh, P. Dharmaraj, S. Gopalakrishnan, K. Jeganathan, Int. J. Hydrog. Energy 45, 1793 (2020)

    Google Scholar 

  39. M. Ju, K. Mallem, S. Dutta et al., Mater. Sci. Semicond. Proc. 85, 68 (2018)

    CAS  Google Scholar 

  40. W. Ma, M. Xie, S. Xie et al., J. Energy Chem. 54, 422 (2021)

    Google Scholar 

  41. M. Naffeti, P.A. Postigo, R. Chtourou, M.A. Zaïbi, Nanomater. Basel 10, 1434 (2020)

    CAS  Google Scholar 

  42. N. Torkashvand, N. Sarlak, Eur. Polym. J. 118, 128 (2019)

    CAS  Google Scholar 

  43. N. Bombuwala Dewage, A.S. Liyanage, C.U. Pittman, D. Mohan, T. Mlsna, Bioresour. Technol. 263, 258 (2018)

    CAS  Google Scholar 

  44. Z. Yang, B. Cui, Y. Bu, Y. Wang, J. Alloys Compd. 775, 826 (2019)

    CAS  Google Scholar 

  45. X. Wang, D. Jiang, C. Jing et al., J. Energy Storage 30, 101554 (2020)

    Google Scholar 

  46. Z.A. Jonoush, A. Rezaee, A. Ghaffarinejad, J. Clean. Prod. 242, 118569 (2020)

    CAS  Google Scholar 

  47. G. Liu, B. Wang, P. Ding et al., J. Alloys Compd. 797, 849 (2019)

    CAS  Google Scholar 

  48. K.J. Jenkinson, A. Wagner, N. Kornienko, E. Reisner, A.E.H. Wheatley, Adv. Funct. Mater. 30, 2002633 (2020)

    CAS  Google Scholar 

  49. M.-L. Wang, D. Yin, Y.-D. Cao et al., J. Coord. Chem. (2020) 

  50. G. Zhu, X. Xie, Y. Liu et al., Appl. Surf. Sci. 442, 256 (2018)

    CAS  Google Scholar 

  51. Z. Luo, S. Martí-Sànchez, R. Nafria et al., ACS Appl. Mater. Int. 8, 29461 (2016)

    CAS  Google Scholar 

  52. M. Wei, Y. Han, Y. Liu, B. Su, H. Yang, Z. Lei, J. Alloys Compd. 831, 154702 (2020)

    CAS  Google Scholar 

  53. Y. Sun, D. Peng, Y. Li et al., Environ. Res. 185, 109467 (2020)

    CAS  Google Scholar 

  54. C.C. Fulton, G. Lucovsky, R.J. Nemanich, J. Vacuum Sci. Technol. B 20, 1726 (2002)

    CAS  Google Scholar 

  55. X. Christodoulou, S.B. Velasquez-Orta, Environ. Sci. Technol. 50, 11234 (2016)

    CAS  Google Scholar 

  56. J. Yun, Hwang et al., Nano Lett. 9, 410 (2009)

    Google Scholar 

  57. K. Sun, N. Park, Z. Sun et al., Energy Environ. Sci. 5, 7872 (2012)

    CAS  Google Scholar 

  58. A.N. Grace, R. Ramachandran, M. Vinoba et al., J. Electroanal. Chem. 26, 199 (2014)

    CAS  Google Scholar 

  59. T. Lopes, L. Andrade, H.A. Ribeiro, A. Mendes, Int. J. Hydrog. Energy 35, 11601 (2010)

    CAS  Google Scholar 

  60. L. Zhang, Q. Liang, P. Yang et al., Int. J. Hydrog. Energy 44, 24209 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support by the Natural Science Foundation for Youths of Hunan Province of China (No. 2019JJ50206), the Scientific Research Project of Hunan Education Department of China (No.19B230), and the Innovation Platform Foundation Project of Hunan Education Department of China (No. 18K087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihua Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, W., Cheng, L. et al. Integration of Fe3O4 nanospheres and micropyramidal textured silicon wafer with improved photoelectrochemical performance. J Mater Sci: Mater Electron 32, 5176–5185 (2021). https://doi.org/10.1007/s10854-021-05249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05249-2

Navigation