Skip to main content
Log in

Study on the catalytic activities of g-C3N4@TiO2 hollow microspheres under UV–visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 and g-C3N4 samples were successfully prepared by simple one-step hydrothermal method and calcination method, respectively. Then, g-C3N4@TiO2 hollow microspheres were prepared by simple water bath evaporation method. This work mainly studies the photocatalytic performance of a series of g-C3N4 composite TiO2 hollow microspheres with different contents. In the experiment, the amount of g-C3N4 was adjusted to obtain the highest photocatalytic activity. Therefore, finding the most suitable amount of g-C3N4 has become the main task of this work. By degrading the catalytic effect of Rhodamine B (RhB) solution, the photocatalytic performance of a series of samples was compared. Finally, it was discovered that when the weight ratio of g-C3N4 to TiO2 was 15%, the photocatalytic effect of the sample prepared in this way was the best and the sample was recorded as 15% g-C3N4@TiO2 composite. The heterostructure of TiO2 and g-C3N4 was constructed through the synergistic effect, achieving excellent photocatalytic performance to a certain extent. Therefore, the degradation rate of 15% g-C3N4@TiO2 composite material is 90.8% within 90 min of UV–visible light irradiation. We further used SEM, TEM, XRD, FT-IR spectroscopy, DRS, XPS and other test methods to characterize the composition, morphology and chemical properties of the composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  2. B. Sun, H.W. Li, L.J. Wei, P. Chen, CrystEngComm 16, 9891–9895 (2014)

    Article  CAS  Google Scholar 

  3. J.Q. Pan, Z.J. Dong, B.B. Wang, Z.Y. Jiang, C. Zhao, J.J. Wang, C.S. Song, Y.Y. Zheng, C.R. Li, Appl. Catal. B 242, 92–99 (2019)

    Article  CAS  Google Scholar 

  4. R.R. Hao, G.H. Wang, H. Tang, L.L. Sun, C. Xu, D.Y. Han, Appl. Catal. B 187, 47–58 (2016)

    Article  CAS  Google Scholar 

  5. J. Wang, G.H. Wang, X. Wang, Y. Wu, Y.R. Su, H. Tang, Carbon 149, 618–626 (2019)

    Article  CAS  Google Scholar 

  6. L. Ma, G.H. Wang, C.J. Jiang, H.L. Bao, Q.C. Xu, Appl. Surf. Sci. 430, 263–272 (2018)

    Article  CAS  Google Scholar 

  7. P. Lv, H.R. Sun, H.B. Yang, W.Y. Fu, B.B. Cao, Y.X. Liu, C. Wang, Y.N. Mu, Vacuum 161, 21–28 (2019)

    Article  CAS  Google Scholar 

  8. W. Wang, J.J. Fang, S.F. Shao, M. Lai, C.H. Lu, Appl. Catal. B 217, 57–64 (2017)

    Article  CAS  Google Scholar 

  9. K. Li, Z.Y. Huang, X.Q. Zeng, B.B. Huang, S.M. Gao, J. Lu, A.C.S. Appl, Mater. Interfaces. 9, 11577–11586 (2017)

    Article  CAS  Google Scholar 

  10. J. Wang, B. Wang, B.G. Lu, Adv. Energy Mater. 10, 2000884 (2020)

    Article  CAS  Google Scholar 

  11. K. Li, S.M. Gao, Q.Y. Wang, H. Xu, Z.Y. Wang, B.B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces. 7, 9023–9030 (2015)

    Article  CAS  Google Scholar 

  12. W. Wang, X.L. Liu, J.J. Fang, C.H. Lu, Mater. Lett. 236, 622–624 (2019)

    Article  CAS  Google Scholar 

  13. C.X. Li, Z.R. Lou, Y.C. Yang, Y.C. Wang, Y.F. Lu, Z.Z. Ye, L.P. Zhu, Langmuir 35, 779–786 (2019)

    Article  CAS  Google Scholar 

  14. R.R. Hao, G.H. Wang, C.J. Jiang, H. Tang, Q.C. Xu, Appl. Surf. Sci. 411, 400–410 (2017)

    Article  CAS  Google Scholar 

  15. L.M. Hu, J.T. Yan, C.L. Wang, B. Chai, J.F. Li, Chin. J. Catal. 40, 458–469 (2019)

    Article  CAS  Google Scholar 

  16. Y.J. Zou, J.W. Shi, D.D. Ma, Z.Y. Fan, L. Lu, C.M. Niu, Chem. Eng. J. 322, 435–444 (2017)

    Article  CAS  Google Scholar 

  17. R. Saleh, A. Taufik, S.P. Prakoso, Appl. Surf. Sci. 480, 697–708 (2019)

    Article  CAS  Google Scholar 

  18. E.J. Zhang, B. Wang, J. Wang, H.B. Ding, S. Zhang, H.G. Duan, X.Z. Yu, B.G. Lu, Chem. Eng. J. 389, 124407 (2020)

    Article  CAS  Google Scholar 

  19. J. Ma, X. Tan, T. Yu, X.L. Li, J. Hydrogen Energy. 41, 3877–3887 (2016)

    Article  CAS  Google Scholar 

  20. Z. Lu, L. Zeng, W.L. Song, Z.Y. Qin, D. Zeng, C.S. Xie, Appl. Catal. B 202, 489–499 (2017)

    Article  CAS  Google Scholar 

  21. T. Wang, H. Xiao, Y. Gao, J.H. Xu, Z.M. Zhang, H.Q. Bian, T.Y. Sun, J. Mater. Sci. Mater. Electron. 30, 11496–11507 (2020)

    Article  Google Scholar 

  22. R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, B. Sahoo, ACS Appl. Nano Mater. 3, 8618–8631 (2020)

    Article  CAS  Google Scholar 

  23. R. Kumar, A. Kumar, N. Verma, R. Philip, B. Sahoo, J. Alloy. Compd. 849(156665), 1–10 (2020)

    Google Scholar 

  24. Y. Tan, Z. Shu, J. Zhou, T.T. Li, W.B. Wang, Z.L. Zhao, Appl. Catal. B 230, 260–268 (2018)

    Article  CAS  Google Scholar 

  25. Y.Y. Wang, W.J. Yang, X.J. Chen, J. Wang, Y.F. Zhu, Appl. Catal. B 220, 337–347 (2018)

    Article  CAS  Google Scholar 

  26. F. Chang, J. Zhang, Y.C. Xie, J. Chen, C.L. Li, J. Wang, J.R. Luo, B.Q. Deng, X.F. Hu, Appl. Surf. Sci. 311, 574–581 (2014)

    Article  CAS  Google Scholar 

  27. S.K. Mohapatra, B. Sahoo, W. Keune and P. Selvam, Chem. Commun. 1466–1467 (2002).

  28. T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, S.K.S. Parashar, J. Mater. Sci. Mater. Electron. 28(18), 13587–13595 (2017)

    Article  CAS  Google Scholar 

  29. P.N. Anantharamaiah, N.S. Chandra, H.M. Shashanka, R. Kumar, B. Sahoo, Adv. Powder Technol. 31, 2385–2393 (2020)

    Article  CAS  Google Scholar 

  30. X.J. Wang, B. Sun, X.X. Li, B.L. Guo, Y.S. Zeng, S.S. Mao, S.H. Zhu, Y.D. Xia, S. Tian, W.T. Luo, Ceram. Int. 44, 18108–18112 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Wang, T. Study on the catalytic activities of g-C3N4@TiO2 hollow microspheres under UV–visible light. J Mater Sci: Mater Electron 32, 5104–5115 (2021). https://doi.org/10.1007/s10854-021-05244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05244-7

Navigation