Skip to main content
Log in

Improvement of electrochemical performance by fluorinated multiwall carbon nanotubes interlayer in lithium–sulfur battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the effects of ordinary multiwalled carbon nanotubes (MWCNTs) interlayer and novel fluorinated carbon nanotube (F-MWCNTs) interlayer on the electrochemical performance of lithium–sulfur (Li–S) batteries were investigated. After fluorination of graphitized MWCNTs, F-WMCNTs with a core–shell structure (fluorocarbon atomic ratio C/F = 1:1) can be obtained. The surface of F-WMCNTs was fluorinated to form a fluorinated carbon structure, while the internal structure of the original MWCNTs remains. F-MWCNTs/MWCNTs and cellulose fibers form a 3D crosslinked network structure, which effectively captures polysulfides. This layer was confirmed by scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). The F-MWCNTs interlayer Li–S battery maintained specific capacities of 1026 mAh/g, 938 mAh/g, and 764 mAh/g at 1C, 2C, and 3C, respectively, showing excellent rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Zhou, M. Hu, Y. He et al., Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode. Carbon 129, 667–673 (2018)

    CAS  Google Scholar 

  2. H. Shang, Z. Zuo, L. Yu et al., Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries. Adv. Mater. 30(27), 1801459 (2018)

    Google Scholar 

  3. K. Yang, L. Zhong, R. Guan, M. Xiao, D. Han, S. Wang, Y. Meng, Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries. Appl. Surf. Sci. 441, 914–922 (2018). https://doi.org/10.1016/j.apsusc.2018.02.108

    Article  CAS  Google Scholar 

  4. Y. Wang, G. Wang, P. He et al., Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chem. Eng. J. 393, 124705 (2020)

    CAS  Google Scholar 

  5. A. Zhang, X. Fang, C. Shen, Y. Liu, I.G. Seo, Y. Ma et al., Functional interlayer of PVDF-HFP and carbon nanofiber for long-life lithium-sulfur batteries. Nano Res. 11(6), 3340–3352 (2018). https://doi.org/10.1007/s12274-017-1929-0

    Article  CAS  Google Scholar 

  6. H. Tang, S. Yao, S. Xue, M. Liu, L. Chen, M. Jing et al., In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multi-functional interlayer for excellent lithium-sulfur battery. Electrochim. Acta 263, 158–167 (2018)

    CAS  Google Scholar 

  7. Z. Li, Z. Ma, Y. Wang, R. Chen, Z. Wu, S. Wang, LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Sci. Bull. 63(3), 169–175 (2018). https://doi.org/10.1016/j.scib.2017.12.018

    Article  CAS  Google Scholar 

  8. Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151(151), A1969–A1976 (2004)

    CAS  Google Scholar 

  9. A.F. Hofmann, D.N. Fronczek, W.G. Bessler, Mechanistic modeling of polysulfide shuttle and capacity loss in lithium–sulfur batteries. J. Power Sources 259(259), 300–310 (2014)

    CAS  Google Scholar 

  10. A. Vizintin, M. Lozinsek, R.K. Chellappan et al., Fluorinated reduced graphene oxide as an interlayer in Li–S batteries. Chem. Mater. 27(20), 7070–7081 (2015)

    CAS  Google Scholar 

  11. Y. Li, X. Wu, C. Liu et al., Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: effect of graphitization of carbon nanotubes. J. Mater. Chem. 7(12), 7128–7137 (2019)

    CAS  Google Scholar 

  12. Y.S. Su, A. Manthiram, Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 3, 1166 (2012)

    Google Scholar 

  13. V.V. Viswanathan, D. Choi, D. Wang et al., Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J. Power Sources 195(11), 3720–3729 (2010)

    CAS  Google Scholar 

  14. S.S. Zhang, D. Foster, J. Read et al., Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material. J. Power Sources 188(2), 601–605 (2009)

    CAS  Google Scholar 

  15. R. Jayasinghe, A.K. Thapa, R.R. Dharmasena et al., Optimization of multi-walled carbon nanotube based CF_x electrodes for improved primary and secondary battery performances. J. Power Sources 253(MAY 1), 404–411 (2014)

    CAS  Google Scholar 

  16. P. Rajkumar, K. Diwakar, G. Radhika et al., Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum 161, 37–48 (2019)

    CAS  Google Scholar 

  17. R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen et al., Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial Coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29(13), 1605006 (2017). https://doi.org/10.1002/adma.201605006

    Article  CAS  Google Scholar 

  18. J. Zou, X. Sun, R. Li et al., CNT network crosslinked by metal Co2+ for stabilizing SnO2 anodes. Synth. Met. 257, 116145 (2019)

    CAS  Google Scholar 

  19. S. Wu, C. Liu, D.A. Dinh et al., Three-dimensional self-standing and conductive MnCO3@graphene/CNT networks for flexible asymmetric supercapacitors. ACS Sustain. Chem. Eng. 7(11), 9763–9770 (2019)

    CAS  Google Scholar 

  20. C. Li, P. Zhang, J. Dai et al., Rational method for improving the performance of lithium-sulfur batteries: coating the separator with lithium fluoride. Chemelectrochem 4(6), 1535–1543 (2017)

    CAS  Google Scholar 

  21. L. Zhang, K. Zhao, R. Yu et al., Phosphorus enhanced intermolecular interactions of SnO2 and graphene as an ultrastable lithium battery anode. Small 13(20), 1603973 (2017)

    Google Scholar 

  22. Y. Guo, S. Jin, L. Wang et al., Synthesis of two-dimensional carbide Mo 2 CT x MXene by hydrothermal etching with fluorides and its thermal stability. Ceram. Int. 46, 19556 (2020)

    Google Scholar 

  23. Y.S. Lee, T.H. Cho, B.K. Lee et al., Surface properties of fluorinated single-walled carbon nanotubes. J. Fluorine Chem. 120(2), 99–104 (2003)

    CAS  Google Scholar 

  24. T. Hayashi, M. Terrones, C. Scheu et al., NanoTeflons: structure and EELS characterization of fluorinated carbon nanotubes and nanofibers. Nano Lett. 2(5), 491–496 (2002)

    CAS  Google Scholar 

  25. R. Zhuang, S. Yao, X. Shen et al., Electrospun β-Mo2C/CNFs as an efficient sulfur host for rechargeable lithium sulfur battery. J. Mater. Sci.: Mater. Electron. 30(5), 4626–4633 (2019)

    CAS  Google Scholar 

  26. M.Q. Zhao, Q. Zhang, J.Q. Huang et al., Unsed double-layer templatedgraphene for high-rate lithium–sulphur batteries. Nat. Commun. 5(5), 3410 (2014)

    Google Scholar 

  27. H.A. Salem, G. Babuu, C.V. Rao et al., Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137(36), 11542 (2015)

    Google Scholar 

  28. C. Zu, A. Manthiram, Hydroxylated grapheme-sulfur nanocomposites for high-rate lithium-sulfur batteries. Adv. Energy Mater. 3(8), 1008–1012 (2013)

    CAS  Google Scholar 

  29. Z. Xiao, Z. Yang, L. Wang et al., A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 27(18), 2891–2898 (2015)

    CAS  Google Scholar 

  30. K.H. An, J.G. Heo, K.G. Jeon et al., X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett. 80(22), 4235–4237 (2002)

    CAS  Google Scholar 

  31. H.F. Bettinger, K.N. Kudin, G.E. Scuseria, Thermochemistry of fluorinated single wall carbon nanotubes. J. Am. Chem. Soc. 123(51), 12849–12856 (2001)

    CAS  Google Scholar 

  32. K.N. Kudin, H.F. Bettinger, G.E. Scuseria, Fluorinated single-wall carbon nanotubes. Phys. Rev. B 63(4), 045413 (2001)

    Google Scholar 

  33. G. Greczynski, L. Hultman, X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater Sci. 107, 100591 (2019)

    Google Scholar 

  34. Z. Zhou, Y. Xu, W. Liu et al., High capacity Si/DC/MWCNTs nano composite anode materials for lithium ion batteries. J. Alloys Compd. 493(1), 636–639 (2010)

    CAS  Google Scholar 

  35. Y. Li, Y.F. Chen, Y.Y. Feng et al., Progress of synthesizing methods and properties of fluorinated carbon nanotubes. Sci. China 05, 1225–1233 (2010)

    Google Scholar 

  36. M.M. Brzhezinskaya, A.S. Vinogradov, A.V. Krestinin, G.I. Zvereva, A.P. Kharitonov, I.I. Kulako, Comparative X-ray absorption investigation of fluorinated single-walled carbon nanotubes. Phys. Solid State 52(4), 876–883 (2010)

    CAS  Google Scholar 

  37. H.Y. Zhou, Z.Y. Sui, F. Zhao et al., A nanostructured porous carbon/MoO2 composite with efficient catalysis in polysulfide conversion for lithium–sulfur batteries. Nanotechnology 31(31), 315601 (2020)

    CAS  Google Scholar 

  38. L. Yan, N. Luo, W. Kong et al., Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS 2/carbon nanotube interlayer. J. Power Sources 389(JUN.15), 169–177 (2018)

    CAS  Google Scholar 

  39. Z. Li, F. Zhang, L. Tang et al., High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator. Chem. Eng. J. 390, 124653 (2020)

    CAS  Google Scholar 

  40. L. Jiao, C. Zhang, C. Geng et al., Capture and catalytic conversion of polysulfides by in situ built TiO_2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 9(19), 1900219.1-1900219.9 (2019)

    Google Scholar 

  41. L. Jie, C. Chao, Q. Furong et al., Mesoporous Co–N–C composite as a sulfur host for high-capacity and long-life lithium–sulfur batteries. J. Mater. Sci. 53, 13143–13155 (2018)

    Google Scholar 

  42. W. Hua, Z. Yang, H. Nie et al., Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano 11(2), 2209–2218 (2017)

    CAS  Google Scholar 

  43. X. Han, Y. Xu, X. Chen et al., Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy 2(6), 1197–1206 (2013)

    CAS  Google Scholar 

  44. Y. Sun, G. Ning, C. Qi et al., An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode. Electrochim. Acta 190, 141–149 (2016)

    CAS  Google Scholar 

  45. B. Zhao, H. Zhuang, Y. Yang et al., Composition-dependent lithium storage performances of SnS/SnO2 heterostructures sandwiching between spherical graphene. Electrochim. Acta 300, 253–262 (2019)

    CAS  Google Scholar 

  46. J. Wang, F. Fang, T. Yuan et al., Three-dimensional graphene/single-walled carbon nanotube aerogel anchored with SnO2 nanoparticles for high performance lithium storage. ACS Appl. Mater. Interfaces 9(4), 3544–3553 (2017)

    CAS  Google Scholar 

  47. J. Leng, Z. Wang, J. Wang et al., Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48(11), 3015–3072 (2019)

    CAS  Google Scholar 

  48. Y. Cen, Y. Fan, Q. Qin et al., Synthesis of Si anode with a microsized-branched structure from recovered Al scrap for use in Li-Ion batteries. J. Power Sources 410, 31–37 (2019)

    Google Scholar 

  49. H. Cho, K. Kim, C.M. Park et al., In situ fabrication of nanohybrid carbon/polyamide film providing robust binding and conductive network in silicon anode for lithium-ion battery. J. Power Sources 410, 25–30 (2019)

    Google Scholar 

  50. Z. Qiu, Y. Nie, X. Sun et al., Electrochemical performance of nano-SnO2 anode with carbonized carbon nanotubes paper as host. J. Electron. Mater. 47(10), 5850–5857 (2018)

    CAS  Google Scholar 

  51. Z. Liu, X. Yuan, S. Zhang et al., Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11(1), 1–21 (2019)

    Google Scholar 

  52. K. Wang, J. Huang, A bioinspired three-dimensional nanofibrous Cu-nanoparticle/SnO2/carbon composite as an anodic material for lithium-ion battery. Appl. Surf. Sci. 476, 293–302 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Jiangxi scientific fund (20142BBE50071) and Jiangxi education fund (KJLD13006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Sun, X., Zou, J. et al. Improvement of electrochemical performance by fluorinated multiwall carbon nanotubes interlayer in lithium–sulfur battery. J Mater Sci: Mater Electron 32, 8265–8274 (2021). https://doi.org/10.1007/s10854-020-05233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05233-2

Navigation