Skip to main content
Log in

Enhanced microwave absorption properties of polymer-derived SiC/SiCN composite ceramics modified by TiC

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 16 February 2021

This article has been updated

Abstract

Porous SiCN(Ti) composite ceramics with good microwave absorbing performance were fabricated by pyrolysis of solid polysilazane modified by tetrabutyl titanate. The introduction of Ti not only acted as active filler to react with free carbon in the matrix to form TiC, but also played the role as catalyst to promote the formation of SiC nanowires. Finally, SiCN(Ti) composite ceramics formed a microstructure containing multi-nanophases and multi-nano heterogeneous interfaces when annealing temperature reached 1500 °C. The complex microstructure annealed at 1500 °C made composite ceramics have good matching impedance, as well as greatly increase the interfacial polarization loss and dipole polarization loss. As a result, the TiC/SiC/SiCN composite ceramics showed the excellent performance of electromagnetic wave absorption in X band. The minimum reflection loss (RL) of samples was − 17.1 dB at the thickness of 1.9 mm, and the maximum effective absorption bandwidth (EAB) of composite ceramics was 3.2 GHz when the thickness of sample was 2.1 mm, which exhibited a promising prospect as a structural and microwave absorbing integration material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky, P. Greil, Electromagnetic properties of Si–C–N based ceramics and composites. Int. Mater. Rev. 59(6), 1743–2804 (2014)

    Article  CAS  Google Scholar 

  2. W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil, A review of absorption properties in silicon-based polymer derived ceramics. J. Eur. Ceram. Soc. 36(15), 3681–3689 (2016)

    Article  CAS  Google Scholar 

  3. C. Beall, E. Delzell, P. Cole, I. Brill, Brain tumors among electronics industry workers. Epidemiology 7(2), 125–130 (1996)

    Article  CAS  Google Scholar 

  4. P. Colombo, G. Mera, R. Riedel, G.D. Soraru, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 1805–1837 (2010)

    CAS  Google Scholar 

  5. Q. Li, X. Yin, W. Duan, L. Cheng, L. Zhang, Improved dielectric properties of PDCs-SiCN by in-situ fabricated nano-structured carbons. J. Eur. Ceram. Soc. 37(4), 1243–1251 (2017)

    Article  CAS  Google Scholar 

  6. Q. Li, X. Yin, W. Duan, B. Hao, L. Kong, X. Liu, Dielectric and microwave absorption properties of polymer derived SiCN ceramics annealed in N2 atmosphere. J. Eur. Ceram. Soc. 34(3), 589–598 (2014)

    Article  CAS  Google Scholar 

  7. J. Xue, X. Yin, L. Cheng, Induced crystallization behavior and EMW absorption properties of CVI SiCN ceramics modified with carbon nanowires. Chem. Eng. J. 378, 122213 (2019)

    Article  CAS  Google Scholar 

  8. F. Ye, L. Zhang, X. Yin, X. Liu, Y. Liu, L. Cheng, SiCN-based composite ceramics fabricated by chemical vapor infiltration with excellent mechanical and electromagnetic properties. Mater. Lett. 111, 169–172 (2013)

    Article  CAS  Google Scholar 

  9. H. Wei, X. Yin, X. Li, M. Li, X. Dang, L. Zhang, L. Cheng, Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon 147, 276–283 (2019)

    Article  CAS  Google Scholar 

  10. Y. Zhang, X. Yin, F. Ye, L. Kong, Effects of multi-walled carbon nanotubes on the crystallization behavior of PDCs-SiBCN and their improved dielectric and EM absorbing properties. J. Eur. Ceram. Soc. 34(5), 1053–1061 (2014)

    Article  CAS  Google Scholar 

  11. H. Pan, X. Yin, J. Xue, L. Chen, L. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016)

    Article  CAS  Google Scholar 

  12. W. Duan, X. Yin, F. Ye, Q. Li, M. Han, X. Liu, M. Han, Y. Cai, Synthesis and EMW absorbing properties of nano SiC modified PDC-SiOC. J. Mater. Chem. C 4(25), 5962–5969 (2016)

    Article  CAS  Google Scholar 

  13. M. Han, X. Yin, W. Duan, S. Ren, L. Zhang, L. Cheng, Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36(11), 2695–2703 (2016)

    Article  CAS  Google Scholar 

  14. L. Kong, C. Wang, X. Yin, X. Fan, W. Wang, J. Huang, Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer, J. Mater. Chem. C 5, (2017)

  15. H. Wu, L. Wang, S. Guo, Y. Wang, Z. Shen, Electromagnetic and microwave-absorbing properties of highly ordered mesoporous carbon supported by gold nanoparticles. Mater. Chem. Phys. 133, 965–970 (2012)

    Article  CAS  Google Scholar 

  16. L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye, L. Zhang, L. Cheng, Z. Xu, J. Huang, Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon 111, 94–102 (2017)

    Article  CAS  Google Scholar 

  17. L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019)

    Article  CAS  Google Scholar 

  18. H. Wu, L. Wang, Y. Wang, S. Guo, S. Guo, Z. Shen, Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles. J. Alloy. Compd. 525, 82–86 (2012)

    Article  CAS  Google Scholar 

  19. K. Luo, X. Yin, F. Ye, Q. Li, L. Zhang, L. Cheng, Electromagnetic wave absorption properties of ZnO-based materials, modified with ZnAl2O4 nanograins. J. Phys. Chem. C 117(5), 2135–2146 (2013)

    Article  CAS  Google Scholar 

  20. Z. Yu, J. Zhan, C. Zhou, L. Yang, R. Li, H. Xia, Synthesis and characterization of SiC(Ti) ceramics derived from a hybrid precursor of titanium-containing polycarbosilane. J. Inorg. Organomet. P 21(3), 412–420 (2011)

    Article  CAS  Google Scholar 

  21. T. Ishikawa, T. Yamamura, K. Okamura, Production mechanism of polytitanocarbosilane and its conversion of the polymer into inorganic materials. J. Mater. Sci. 27(24), 6627–6634 (1992)

    Article  CAS  Google Scholar 

  22. Y.C. Song, Y. Hasegawa, S.J. Yang, M. Sato, Ceramic fibres from polymer precursor containing Si-O-Ti bonds part I: the formation mechanism and the pyrolysis of the polymer. J. Mater. Sci. 23, 1911–1920 (1988)

    Article  CAS  Google Scholar 

  23. Y. Hasegawa, C.X. Feng, Y.C. Song, Z.L. Tan, Ceramic fibres from polymer precursor containing Si-O-Ti bonds. Part II synthesis of the various types of ceramic fibres. J. Mater. Sci. 26, 3657–3664 (1991)

    Article  CAS  Google Scholar 

  24. M.A. Schiavon, G.D. Soraru, I. Valeria, P. Yoshida, Synthesis of a polycyclic silazane network and its evolution to silicon carbonitride glass. J. Non-Cryst. Solids 304(1), 76–83 (2002)

    Article  CAS  Google Scholar 

  25. H.B. Liu, J.A. Ascencio, M. Perez-Alvarez, M.J. Yacaman, Melting behavior of nanometer sized gold isomers. Surf. Sci. 491, 88–98 (2001)

    Article  CAS  Google Scholar 

  26. K. Lu, Z.H. Jin, Melting and superheating of low-dimensional materials. Curr. Opin. Solid St. M. 5(1), 39–44 (2001)

    Article  CAS  Google Scholar 

  27. S.S. Ryu, Y.D. Kim, I.H. Moon, Dilatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying. J. Alloy. Compd. 335(1), 233–240 (2002)

    Article  CAS  Google Scholar 

  28. H.W. Sheng, Z.Q. Hu, K. Lu, Melting and freezing behaviors of Pb nanoparticles embedded in an Al matrix. Nanostruct. Mater. 9(1), 661–664 (1997)

    Article  CAS  Google Scholar 

  29. R.O. Dillon, J.A. Woollam, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B 29(6), 3482–3489 (1984)

    Article  CAS  Google Scholar 

  30. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64(7), 075414 (2001)

    Article  CAS  Google Scholar 

  31. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000)

    Article  CAS  Google Scholar 

  32. A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  CAS  Google Scholar 

  33. P. Mallet-Ladeira, P. Puech, C. Toulouse, M. Cazayous, N. Ratel-Ramond, P. Weisbecker, G.L. Vignoles, M. Monthioux, A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law. Carbon 80, 629–639 (2014)

    Article  CAS  Google Scholar 

  34. M.R. Ammar, N. Galy, J.N. Rouzaud, N. Toulhoat, C.E. Vaudey, P. Simon, N. Moncoffre, Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing. Carbon 95, 364–373 (2015)

    Article  CAS  Google Scholar 

  35. Z. Yu, H. Min, J. Zhan, L. Yang, Preparation and dielectric properties of polymer-derived SiCTi ceramics. Ceram. Int. 39, 3999–4007 (2013)

    Article  CAS  Google Scholar 

  36. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)

    Article  CAS  Google Scholar 

  37. H. Xu, X. Yin, X. Fan, Z. Tang, Z. Hou, M. Li, X. Li, L. Zhang, L. Cheng, Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon 148, 421–429 (2019)

    Article  CAS  Google Scholar 

  38. T.J. McMahon, Y. Xiao, Electron spin resonance study of the dangling bond in amorphous Si and porous Si. Appl. Phys. Lett. 63(12), 1657–1659 (1993)

    Article  CAS  Google Scholar 

  39. A.A. Konchits, M.Y. Valakh, B.D. Shanina, S.P. Kolesnik, I.B. Yanchuka, Effects of ion implantation on electron centers in hydrogenated amorphous carbon films. J. Appl. Phys. 93(10), 5905–5910 (2003)

    Article  CAS  Google Scholar 

  40. H. Wei, X. Yin, F. Jiang, Z. Hou, L. Cheng, L. Zhang, Optimized design of high-temperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics. J. Alloy. Compd. 823, 153864 (2020)

    Article  CAS  Google Scholar 

  41. Y. Chen, M. Cao, T. Wang, Q. Wan, Microwave absorption properties of the ZnO nanowire-polyester composites. Appl. Phys. Lett. 84(17), 3367–3369 (2004)

    Article  CAS  Google Scholar 

  42. R. Zhuo, L. Qiao, H. Feng, J. Chen, D. Yan, Z. Wu, P. Yan, Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J. Appl. Phys. 104(9), 94101 (2008)

    Article  CAS  Google Scholar 

  43. M. Cao, X. Shi, X. Fang, H. Jin, Z. Hou, W. Hou, Y. Chen, Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91(20), 203110 (2007)

    Article  CAS  Google Scholar 

  44. X. Fang, M. Cao, X. Shi, Z. Hou, W. Song, J. Yuan, Microwave responses and general model of nanotetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric relaxation, and microantenna. J. Appl. Phys. 107(5), 54304 (2010)

    Article  CAS  Google Scholar 

  45. X. Fang, X. Shi, M. Cao, J. Yuan, Micro-current attenuation modeling and numerical simulation for cage-like ZnO/SiO2 nanocomposite. J. Appl. Phys. 104(9), 96101 (2008)

    Article  CAS  Google Scholar 

  46. T. Yamamura, T. Ishikawa, M. Shibuya, T. Hisayuki, Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. J. Mater. SCI. 23, 2589–2594 (1988)

    Article  CAS  Google Scholar 

  47. P. Amorós, D. Beltrán, C. Guillem, J. Latorre, Synthesis and characterization of SiC/MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidic precursors. Chem. Mater. 14(4), 1585–1590 (2002)

    Article  CAS  Google Scholar 

  48. L.P. Zawada, T. Ishikawa, Mechanical behavior of a Si-Ti-C-O fiber-bonded ceramic material. Key Eng. Mater. 164–165, 245–248 (1998)

    Article  Google Scholar 

  49. J. Hapke, G. Ziegler, Synthesis and pyrolysis of liquid organometallic precursors for advanced Si-Ti-C-N composites. Adv. Mater. 7(4), 380–384 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (51821091 and 51902257), the National Science Fund for Distinguished Young Scholars (51725205), and the 111 Project (B08040). We would like to thank my mentor professor Xiaowei Yin for his guidance and help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jimei Xue or Yongsheng Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The article was originally published in SpringerLink with open access. With the author(s)’ decision to step back from Open Choice, the copyright of the article changed on January 2021 to © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tang, Z., Xue, J. et al. Enhanced microwave absorption properties of polymer-derived SiC/SiCN composite ceramics modified by TiC. J Mater Sci: Mater Electron 32, 25895–25907 (2021). https://doi.org/10.1007/s10854-020-05193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05193-7

Navigation