Skip to main content
Log in

A study of the magnetic properties and the magneto-crystalline anisotropy for the nano-composites CoFe2O4/Sm0.7La0.3FeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, nano-composites are formed as a mixture of spinel and a perovskite with various percentages to enhance their physical properties and applicability. The composites have the general form (1-x) CoFe2O4 + x Sm0.7La0.3FeO3; 0.0 ≤ x ≤ 1. All the samples including the parents are thoroughly characterized to make sure of their crystallinity, single or double phase formation, and the percentages of the mixed components. Moreover, the crystallite size of the prepared samples, the infrared excitation of their functional groups, and their particle distribution are also comprehensively explored. The inspected samples display the spinel ferrites signature peaks at around 405 and 568 cm−1 with corresponding bond force constants of about 1 × 105 and 2 × 105 dyne/cm, respectively. The magnetic properties of samples at room temperature are discussed with extensive elaboration on the critical size and the magneto-crystalline anisotropy constant. The Stoner–Wohlfarth model has been applied to find the cubic anisotropy constant of CoFe2O4 which agrees pretty well with prior published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.H. Hou et al., Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: a first-principles study. J. Phys. D. Appl. Phys. (2010). https://doi.org/10.1088/0022-3727/43/44/445003

    Article  Google Scholar 

  2. S. Jauhar, J. Kaur, A. Goyal, S. Singhal, Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 6(100), 97694–97719 (2016). https://doi.org/10.1039/c6ra21224g

    Article  CAS  Google Scholar 

  3. T. Yu, Z.X. Shen, Y. Shi, J. Ding, Cation migration and magnetic ordering in spinel CoFe2O4 powder: Micro-Raman scattering study. J. Phys. Condens. Matter. (2002). https://doi.org/10.1088/0953-8984/14/37/101

    Article  Google Scholar 

  4. L.J. Berchmans, V. Leena, K. Amalajyothi, S. Angappan, A. Visuvasam, Preparation of lanthanum ferrite substituted with MG and CA. Mater. Manuf. Process. 24(5), 546–549 (2009). https://doi.org/10.1080/10426910902746739

    Article  CAS  Google Scholar 

  5. L. Wu et al., Monolayer assembly of ferrimagnetic CoxFe3-xO 4 nanocubes for magnetic recording. Nano Lett. 14(6), 3395–3399 (2014). https://doi.org/10.1021/nl500904a

    Article  CAS  Google Scholar 

  6. J.A. Paulsen, A.P. Ring, C.C.H. Lo, J.E. Snyder, D.C. Jiles, Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications. J Phys Appl (2005). https://doi.org/10.1063/1.1839633

    Article  Google Scholar 

  7. A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6(5), 433–455 (2002). https://doi.org/10.1016/S1364-0321(02)00014-X

    Article  CAS  Google Scholar 

  8. Y.M. Zhang, Y.T. Lin, J.L. Chen, J. Zhang, Z.Q. Zhu, Q.J. Liu, A high sensitivity gas sensor for formaldehyde based on silver doped lanthanum ferrite. Sensors Actuators, B Chem. 190, 171–176 (2014). https://doi.org/10.1016/j.snb.2013.08.046

    Article  CAS  Google Scholar 

  9. F. Tang Li, Y. Liu, R. Hong Liu, Z. Min Sun, D. Shun Zhao, C. Guang Kou, Preparation of Ca-doped LaFeO3 nanopowders in a reverse microemulsion and their visible light photocatalytic activity”. Mater. Lett. 64(2), 223–225 (2010). https://doi.org/10.1016/j.matlet.2009.10.048

    Article  CAS  Google Scholar 

  10. N. Sanpo, C.C. Berndt, C. Wen, J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 9(3), 5830–5837 (2013). https://doi.org/10.1016/j.actbio.2012.10.037

    Article  CAS  Google Scholar 

  11. M. I. A. A. Maksoud et al., Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Elsevier Ltd. 127 (2019)

  12. M.A. Ahmed, N.G. Imam, M.K. Abdelmaksoud, Y.A. Saeid, Magnetic transitions and butterfly-shaped hysteresis of Sm-Fe-Al-based perovskite-type orthoferrite. J. Rare Earths 33(9), 965–971 (2015). https://doi.org/10.1016/S1002-0721(14)60513-5

    Article  CAS  Google Scholar 

  13. E.E. Ateia, H. Ismail, H. Elshimi, M.K. Abdelmaksoud, Structural and magnetic tuning of LaFeO3 orthoferrite substituted different rare earth elements to optimize their technological applications, under puplication. J. Inorgan. Organometall. Polym. Mater. (2020). https://doi.org/10.1088/2053-1591/abd73b

    Article  Google Scholar 

  14. K.S. Rao, G.S.V.R.K. Choudary, K.H. Rao, C. Sujatha, Structural and magnetic properties of ultrafine CoFe2O4 nanoparticles. Procedia Mater. Sci. 10, 19–27 (2014). https://doi.org/10.1016/j.mspro.2015.06.019

    Article  CAS  Google Scholar 

  15. J. Coates, Encyclopedia of Analytical Chemistry -IInterpretation of Infrared Spectra, A Practical Approach. Encycl. Anal. Chem. 1–23, (2004)

  16. O.M. Hemeda, M.M. Barakat, D.M. Hemeda, Structural, electrical and spectral studies on double rare-earth orthoferrites La1-xNdxFeO3. Turkish J. Phys. 27(6), 537–549 (2003). https://doi.org/10.3906/sag-1205-29

    Article  CAS  Google Scholar 

  17. B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd edn. (CRC Press, Boca Raton, 2011).

    Book  Google Scholar 

  18. C. Pasquini, Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 14(2), 198–219 (2003). https://doi.org/10.1590/S0103-50532003000200006

    Article  CAS  Google Scholar 

  19. N. Adhlakha, K.L. Yadav, R. Singh, BiFeO3–CoFe2O4–PbTiO3 composites: structural, multiferroic, and optical characteristics. J. Mater. Sci. 50(5), 2073–2084 (2015). https://doi.org/10.1007/s10853-014-8769-z

    Article  CAS  Google Scholar 

  20. C. Berthomieu, E. Nabedryk, W. Mäntele, J. Breton, Characterization by FTIR spectroscopy of the photoreduction of the primary quinone acceptor QA in photosystem II. FEBS Lett. 269(2), 363–367 (1990). https://doi.org/10.1016/0014-5793(90)81194-S

    Article  CAS  Google Scholar 

  21. T. Ibusuki, S. Kojima, O. Kitakami, Y. Shimada, Magnetic anisotropy and behaviors of Fe. IEEE Trans. Magn. 37(4), 2223–2225 (2001)

    Article  CAS  Google Scholar 

  22. S. Yuvaraj, S. Layek, S.M. Vidyavathy, S. Yuvaraj, D. Meyrick, R.K. Selvan, Electrical and magnetic properties of spherical SmFeO3 synthesized by aspartic acid assisted combustion method. Mater. Res. Bull. 72, 77–82 (2015). https://doi.org/10.1016/j.materresbull.2015.07.013

    Article  CAS  Google Scholar 

  23. A. Amirabadizadeh, Z. Salighe, R. Sarhaddi, Z. Lotfollahi, Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties. J. Magn. Magn. Mater. 434, 78–85 (2017). https://doi.org/10.1016/j.jmmm.2017.03.023

    Article  CAS  Google Scholar 

  24. M.A. Ahmed, S.F. Mansour, H. Ismael, A comparative study on the magnetic and electrical properties of MFe12O19 (M=Ba and Sr)/BiFeO3 nanocomposites. J. Magn. Magn. Mater. 378, 376–388 (2015). https://doi.org/10.1016/J.JMMM.2014.10.173

    Article  CAS  Google Scholar 

  25. C. Sudakar, G.N. Subbanna, T.R.N. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. J. Magn. Magn. Mater. 263(3), 253–268 (2003). https://doi.org/10.1016/S0304-8853(02)01572-X

    Article  CAS  Google Scholar 

  26. L. Horng, G. Chern, M.C. Chen, P.C. Kang, D.S. Lee, Magnetic anisotropic properties in Fe3O4 and CoFe2O4 ferrite epitaxy thin films. J. Magn. Magn. Mater. 270(3), 389–396 (2004). https://doi.org/10.1016/j.jmmm.2003.09.005

    Article  CAS  Google Scholar 

  27. A.J. Rondinone, A.C.S. Samia, Z.J. Zhang, Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles. Appl. Phys. Lett. 76(24), 3624–3626 (2000). https://doi.org/10.1063/1.126727

    Article  CAS  Google Scholar 

  28. M. D’Aquino, Nonlinear magnetization dynamics in thin-films and nanoparticles. Dr. Thesis Electr. Eng. 155, (2004)

  29. T. Hyeon, Chemical synthesis of magnetic nanoparticles. 927–934, (2003)

  30. A. Lehlooh, S.H. Mahmood, J.M. Williams, On the particle size dependence of the magnetic anisotropy energy constant. Phys B: Condens Mater 321, 159–162 (2002)

    Article  CAS  Google Scholar 

  31. Q. Song, Z.J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126(19), 6164–6168 (2004). https://doi.org/10.1021/ja049931r

    Article  CAS  Google Scholar 

  32. L. Kumar, M. Kar, Journal of Magnetism and Magnetic Materials Influence of Al 3 + ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323(15), 2042–2048 (2011). https://doi.org/10.1016/j.jmmm.2011.03.010

    Article  CAS  Google Scholar 

  33. C. D. G. B D Cullity, Introduction to magnetic materials. 2008.

  34. C.N. Chinnasamy et al., Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl. Phys. Lett. 83(14), 2862–2864 (2003). https://doi.org/10.1063/1.1616655

    Article  CAS  Google Scholar 

  35. D.S. Mathew, R.S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129(1–3), 51–65 (2007). https://doi.org/10.1016/j.cej.2006.11.001

    Article  CAS  Google Scholar 

  36. K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007). https://doi.org/10.1016/j.jmmm.2006.06.003

    Article  CAS  Google Scholar 

  37. C. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. Ramachandra Reddy, K.H. Rao, Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39(3), 3077–3086 (2013). https://doi.org/10.1016/j.ceramint.2012.09.087

    Article  CAS  Google Scholar 

  38. E.E. Ateia, M.K. Abdelamksoud, M.A. Rizk, Improvement of the physical properties of novel (1–x) CoFe2O4 + (x) LaFeO3 nanocomposites for technological applications. J. Mater. Sci. Mater. Electron. 28(21), 16547–16553 (2017). https://doi.org/10.1007/s10854-017-7567-1

    Article  CAS  Google Scholar 

  39. C. Caizer, M. Stefanescu, Nanocrystallite size effect on σs and Hc in nanoparticle assemblies. Phys. B Condens. Matter 327(1), 129–134 (2003). https://doi.org/10.1016/S0921-4526(02)01785-4

    Article  CAS  Google Scholar 

  40. L.D. Tung, V. Kolesnichenko, D. Caruntu, N.H. Chou, C.J. O’Connor, L. Spinu, Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys. 93(102), 7486–7488 (2003). https://doi.org/10.1063/1.1540145

    Article  CAS  Google Scholar 

  41. Y.C. Wang, J. Ding, J.B. Yi, B.H. Liu, T. Yu, Z.X. Shen, High-coercivity Co-ferrite thin films on (100)-SiO 2 substrate. Appl. Phys. Lett. 84(14), 2596–2598 (2004). https://doi.org/10.1063/1.1695438

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Abdelmaksoud, M.K. & Ismail, H. A study of the magnetic properties and the magneto-crystalline anisotropy for the nano-composites CoFe2O4/Sm0.7La0.3FeO3. J Mater Sci: Mater Electron 32, 4480–4492 (2021). https://doi.org/10.1007/s10854-020-05189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05189-3

Navigation