Skip to main content
Log in

Structure analysis and nonlinear/linear optical properties of PVAOH/Si composites for low-cost optical technologies and limiting absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optical limiting is considered one of the significant unusual applications that attract the attention of many scientists. In this study, we synthesized a novel flexible composite of silicon (Si)-doped polyvinyl alcohol (PVAOH) for this purpose. The preparation of the present polymeric film with different Si weight percentage was prepared by casting technique. The X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis spectroscopy of X-rays (EDX), and Fourier-transform infrared spectroscopy (FTIR) have been carried out. Also, UV–Vis–NIR spectroscopy has been used to test the optical interpretation of the as-prepared films. The analysis of the structure reveals substantial integration between the two current phases. The SEM images created to the samples indicate an increase in surface roughness with the Si- substantive. The addition of Si to the virgin PVAOH has an impact on the optical properties such as the indirect optical energy gap (Eg), the arrangement of the localized state (Eu), absorption coefficient, and optical conductivity response. Depending on different models like Moss, Hervé–Vandamme, Ravindra, and Singh-Kumar, the relation between the refractive index and the energy gap has been explored. Besides, the linear together with nonlinear optical assets of PVAOH/xSi polymer composites were investigated. The limiting aspects of the sample absorption were explored by employing different wavelengths (635 and 532 nm) coming from the He–Ne and green diode laser sources. The PVAOH/0.1Si film revealed significant optical advantages along with high optical laser limitation, recommending this could be a petitioner for different nonlinear technological devices and laser shields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Khairy, M. Abdel-Aziz, H. Algarni, A. Alshehri, I. Yahia, H.E. Ali, The optical characteristic of PVA composite films doped by ZrO2 for optoelectronic and block UV–Visible applications. Mater. Res. Express. 6, 115346 (2019)

    Google Scholar 

  2. K. Hemalatha, K. Rukmani, Synthesis, characterization, and optical properties of polyvinyl alcohol–cerium oxide nanocomposite films. RSC Adv. 6, 74354–74366 (2016)

    CAS  Google Scholar 

  3. K. Krishnamoorthy, S. Natarajan, S.-J. Kim, J. Kadarkaraithangam, Enhancement in thermal and tensile properties of ZrO2/poly (vinyl alcohol) nanocomposite film. Mater. Express. 1, 329–335 (2011)

    CAS  Google Scholar 

  4. C.U. Devi, A. Sharma, V.N. Rao, Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater. Lett. 56, 167–174 (2002)

    CAS  Google Scholar 

  5. J. Lee, D. Bhattacharyya, A. Easteal, J. Metson, Properties of nano-ZnO/poly (vinyl alcohol)/poly (ethylene oxide) composite thin films. Curr. Appl. Phys. 8, 42–47 (2008)

    Google Scholar 

  6. Y. Khairy, H.I. Elsaeedy, M.I. Mohammed, H.Y. Zahran, I.S. Yahia, Anomalous behaviour of the electrical properties for PVA/TiO2 nanocomposite polymeric films. Polym. Bull. 48, 1–15 (2019)

    Google Scholar 

  7. Y. Khairy, I.S. Yahia, H. Elhosiny Ali, Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-off laser devices. J. Mater. Sci. 31, 1–14 (2020)

    Google Scholar 

  8. H. Elosiny Ali, Y. Khairy, Optical and electrical performance of copper chloride doped polyvinyl alcohol for optical limiter and polymeric varistor devices. Phys. B 572, 256–265 (2019)

    Google Scholar 

  9. M. Abdelaziz, Cerium(III) doping effects on the optical and thermal properties of PVA films. Phys. B 406, 1300–1307 (2011)

    CAS  Google Scholar 

  10. Y. Tamgadge, A. Sunatkari, S. Talwatkar, V. Pahurkar, G. Muley, Passive optical limiting studies of nanostructured Cu doped ZnO–PVA composite thin films. Opt. Mater. 51, 175–184 (2016)

    CAS  Google Scholar 

  11. Y. Khairy, H. Elhosiny Ali, I.S. Yahia, H. Zahran, Facile design of a CUT-OFF laser power attenuation using Safranin O-doped PMMA polymeric composite films: optical spectroscopy and dielectric properties. Optik 219, 164943 (2020)

    CAS  Google Scholar 

  12. A. Tripathi, A. Roy, A. Tripathi, P. Pillai, T. Goel, K. Singh, Non-linear optical characterization of polymer dye composites and their characterization as holographic recording media. J. Mater. Sci. Lett. 15, 1577–1579 (1996)

    CAS  Google Scholar 

  13. E. Polimerov, D.S. Si, Structural, optical and electrical studies on Si-doped polymer electrolytes. Materiali in tehnologije 47(6), 799–802 (2013)

    Google Scholar 

  14. Z.B. He, J.C. Yan, Y.J. Tang, P. Li, Y. Zhang, Influence of pressure on structure and properties of Si-doped glow discharge polymer film. Acta Physica Sinica 60(6), 066803 (2011)

    Google Scholar 

  15. H. Elhosiny Ali, Y. Khairy, Facile synthesis, structure, AFM, thermal, and optical analysis of BiI3/PVAL nanocomposite films for laser CUT-OFF optical devices. Vacuum 180, 109640 (2020)

    Google Scholar 

  16. H. Elhosiny Ali, Y. Khairy, Microstructure and optical properties of Ni2+ doped PVA for optoelectronic devices. Phys. B 570, 41–47 (2019)

    CAS  Google Scholar 

  17. R.J. Sengwa, S. Choudhary, Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 131, 16 (2014)

    Google Scholar 

  18. H. Elhosiny Ali, Y. Khairy, Synthesis, characterization, refractive index-bandgap relations, and optical nonlinearity parameters of CuI/PVOH nanocomposites. Opt. Laser Technol. 136, 106736 (2020)

    Google Scholar 

  19. N. Ahad, E. Saion, E. Gharibshahi, Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J. Nanomater. (2012). https://doi.org/10.1155/2012/857569

    Article  Google Scholar 

  20. M.M. Abdel-Aziz, H. Algarni, A.M. Alshehri, I.S. Yahia, H. Elhosiny Ali, Study the impact of terbium additions in the microstructure, optical and electrical properties of polyvinyl alcohol. Mater. Res. Express 6(12), 125321 (2019)

    CAS  Google Scholar 

  21. Y. Zhu, X. Wang, Y. Hou, X. Gao, L. Liu, Y. Wu, M. Shimizu, A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium-ion batteries. Electrochim. Acta 87, 113–118 (2013)

    CAS  Google Scholar 

  22. T. Siddaiah, P. Ojha, N.O. Kumar, C. Ramu, Structural, optical and thermal characterizations of PVA/MAA: EA polyblend films. Mater. Res. 21, 1–7 (2018)

    Google Scholar 

  23. F.A. Mustafa, Optical properties of NaI doped polyvinyl alcohol films. Phys. Sci. Res. Int. 1, 1–9 (2013)

    Google Scholar 

  24. D.M. Sabara, J.S. Dunne, A.Q. Pedro, J. Trifunović, I.I. Balogun, O. Kotlicic, A. Serrano, I. Kertesz, Spectroscopic studies of naproxen and tryptophan immobilized in polyvinyl alcohol. Biotechnol. Food Sci. 75, 39–49 (2011)

    CAS  Google Scholar 

  25. A. Shehab, Thermal and spectroscopic studies of polyvinyl alcohol/sodium carboxymethylcellulose blends. Egypt J. Solids 31, 1–8 (2008)

    Google Scholar 

  26. K. Hemalatha, K. Rukmani, N. Suriyamurthy, B. Nagabhushana, Synthesis, characterization, and optical properties of hybrid PVA–ZnO nanocomposite: a composition-dependent study. Mater. Res. Bull. 51, 438–446 (2014)

    CAS  Google Scholar 

  27. H. Elhosiny Ali, The influence of yttrium-ions on the optical and electrical behavior of PVA polymeric films. Mater. Res. Express. 6, 045313 (2019)

    Google Scholar 

  28. S. Asha, Y. Sangappa, S. Ganesh, Tuning the refractive index and optical band gap of silk fibroin films by electron irradiation. J. Spectrosc. (2015). https://doi.org/10.1155/2015/879296

    Article  Google Scholar 

  29. F. Urbach, The long-wavelength edge of photographic sensitivity and the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    CAS  Google Scholar 

  30. S.K. O’Leary, S. Johnson, P. Lim, The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis. J. Appl. Phys. 82, 3334–3340 (1997)

    Google Scholar 

  31. E. Davis, N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)

    CAS  Google Scholar 

  32. F. Yakuphanoglu, G. Barım, I. Erol, The effect of FeCl3 on the optical constants and optical band gap of MBZMA-co-MMA polymer thin films. Phys. B 391, 136–140 (2007)

    CAS  Google Scholar 

  33. T. Moss, Relations between the refractive index and the energy gap of semiconductors. Physica Status Solidi (B) 131, 415–427 (1985)

    CAS  Google Scholar 

  34. V. Gupta, N. Ravindra, Comments on the moss formula. Physica Status Solidi (B) 100, 715–719 (1980)

    CAS  Google Scholar 

  35. N.M. Ravindra, S. Auluck, V.K. Srivastava, On the penn gap in semiconductors. Physica Status Solidi (B) 93, K155–K160 (1979)

    CAS  Google Scholar 

  36. R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, G. Balakrishnaiah, M.R. Kumar, Interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloy. Compd. 473, 28–35 (2009)

    CAS  Google Scholar 

  37. P. Herve, L. Vandamme, General relation between refractive index and the energy gap in semiconductors. Infrared Phys. Technol. 35, 609–615 (1994)

    CAS  Google Scholar 

  38. V. Kumar, J. Singh, Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 48, 8 (2010)

    Google Scholar 

  39. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, The relationship between the refractive index-energy gap and the film thickness effect on the characteristic parameters of CdSe thin films. Opt. Commun. 284, 2307–2311 (2011)

    CAS  Google Scholar 

  40. P.N. Prasad, D.R. Ulrich, Nonlinear Optical and Electroactive Polymers (Springer, New York, 2012).

    Google Scholar 

  41. M.S. Reddy, K.R. Reddy, B. Naidu, P. Reddy, Optical constants of polycrystalline CuGaTe2 films. Opt. Mater. 4, 787–790 (1995)

    CAS  Google Scholar 

  42. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, Optically, and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399–404 (2003)

    Google Scholar 

  43. V. Ganesh, I. Yahia, S. AlFaify, M. Shakir, Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115–125 (2017)

    CAS  Google Scholar 

  44. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap, and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    CAS  Google Scholar 

  45. C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970)

    Google Scholar 

  46. T.A. Hamdalla, S.M. Selim, A.K. Mohamed, M.E. Mahmoud, Design, characterization and optical properties of assembled nanoscale thin films of copper(II) complex with 5-azo-Phenol-8-Hydroxyquinoline. Opt. Mater. 95, 109215 (2019)

    CAS  Google Scholar 

  47. L. Tichý, H. Ticha, P. Nagels, R. Callaerts, R. Mertens, M. Vlček, Optical properties of amorphous As–Se and Ge–As–Se thin films. Mater. Lett. 39, 122–128 (1999)

    Google Scholar 

  48. M.A. Assiri, M.A. Manthrammel, A. Aboraia, I. Yahia, H. Zahran, V. Ganesh, M. Shakir, S. AlFaify, A.V. Soldatov, Kramers-Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): the new trend in laser power attenuation using dyes. Phys. B 552, 62–70 (2019)

    CAS  Google Scholar 

  49. M. Shakir, M.T. Khan, V. Ganesh, I. Yahia, B.U. Haq, A. Almohammedi, P.S. Patil, S.R. Maidur, S. AlFaify, Influence of Dy doping on key linear, nonlinear and optical limiting characteristics of SnO2 films for optoelectronic and laser applications. Opt. Laser Technol. 108, 609–618 (2018)

    Google Scholar 

  50. M. Mohammed, I. Yahia, Synthesis and optical properties of basic fuchsin dye-doped PMMA polymeric films for laser applications: wide-scale absorption band. Opt. Quant. Electron. 50, 159 (2018)

    Google Scholar 

  51. H. Elhosiny Ali, Y. Khairy, H. Algarni, H.I. Elsaeedy, A.M. Alshehri, H. Alkharis, I.S. Yahia, The visible laser absorption property of chromium-doped polyvinyl alcohol films: synthesis, optical and dielectric properties. Opt. Quantum Electron. 51(2), 47 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Research Center for Advanced Materials Science (RCAMS), King Khalid University for funding this work under grant number RCAMS/KKU/015-20.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Elhosiny Ali or Yasmin Khairy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in the current article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H.E., Morad, I., Algarni, H. et al. Structure analysis and nonlinear/linear optical properties of PVAOH/Si composites for low-cost optical technologies and limiting absorption. J Mater Sci: Mater Electron 32, 4466–4479 (2021). https://doi.org/10.1007/s10854-020-05188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05188-4

Navigation