Skip to main content
Log in

Development of lightweight carbon nanotube-based epoxy nanocomposite shield for broadband electromagnetic interference shielding: estimating shielding effectiveness and experimental validation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lightweight carbon nanotube (CNT)-based epoxy nanocomposite shield with 0.5 mm thickness are fabricated at various CNT concentrations for broadband electromagnetic interference shielding in this work. The electromagnetic parameters of the samples measured using impedance spectroscopy are used to estimate shielding effectiveness in the X and Ku frequency bands using finite element-based method. The shielding effectiveness obtained using the finite element model at 2 wt.% CNT concentration in the X and Ku bands are 19 dB and 26 dB which agrees well with experimental results obtained using waveguide measurement which amounts to 20 dB and 27 dB, respectively. The finite element model developed for the estimation of shielding effectiveness provides promising results in both X and Ku bands which are experimentally validated. Shielding effectiveness of the prepared samples in the Ku band is superior to that in the X band. High values of shielding in both X and Ku bands qualify it as a good broadband shield with minimal thickness and less weight and cost. Absorption phenomenon dominates the shielding mechanism in both these bands due to the dielectric losses and the electron-rich skeletal structure of CNT. The dominance of absorption loss increases as the frequency shifts from X to Ku band qualifying the developed nanocomposite material as a good broadband shield covering both X and Ku bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data and material that support the findings of this study are available from the corresponding author, upon request.

References

  1. R. Kumaran, M. Alagar, S. Dinesh Kumar, V. Subramanian, K. Dinakaran, Appl. Phys. Lett. 107, 113107 (2015)

    Article  Google Scholar 

  2. S. Mondal et al., Mater. Res. Express 4, 105039 (2017)

    Article  Google Scholar 

  3. J.V. Vas, M.J. Thomas, IEEE Trans. Electromagn. Compat. 60, 376 (2018)

    Article  Google Scholar 

  4. Y. Yang et al., Nanotechnology 18, 345701 (2007)

    Article  Google Scholar 

  5. A. Kiebele, G. Gruner, Appl. Phys. Lett. 91, 144104 (2007)

    Article  Google Scholar 

  6. A.K. Chakraborty, T. Plyhm, M. Barbezat et al., J. Nanopart. Res. 13, 6493 (2011)

    Article  CAS  Google Scholar 

  7. N. Hu, Z. Masuda, C. Yan et al., Nanotechnology 19, 215701 (2008)

    Article  Google Scholar 

  8. Y. Long, Z. Chen, Appl. Phys. Lett. 85, 1796 (2004)

    Article  CAS  Google Scholar 

  9. S. Simcha, A. Dotan, S. Kenig et al., Nanomaterials 2, 348 (2012)

    Article  CAS  Google Scholar 

  10. S. Bal, Bull. Mater. Sci. 33, 27 (2010)

    Article  CAS  Google Scholar 

  11. Y.J. Kim, T.S. Shin, H.D. Choi et al., Carbon 43, 23 (2004)

    Article  Google Scholar 

  12. M. Umashanker, N.M. Renukappa, K. Shivakumar, J.S. Rajan, IEEE Trans. Electromagn. Compat. 61, 1025 (2019)

    Article  Google Scholar 

  13. S.P. Soubhagya, R. Bhavani, T. Gireesh Kumar, T. Rajagopalan, Comp. Mater. Sci. 126, 400 (2017)

    Article  Google Scholar 

  14. M. Lekshmi, K. Polisetti Naveen, K. Sunitha, K. Sindhu Thiruthi, IET Sci. Meas. Tech. 13, 1299 (2019)

    Article  Google Scholar 

  15. M. Varga, T. Izak, V. Vretenar, H. Kozak, J. Holovsky, A. Artemenko, M. Hulman, V. Skakalova, D. Su Lee, A. Kromka, Carbon 111, 54 (2017)

    Article  CAS  Google Scholar 

  16. P.P. Kuzhir et al., IEEE Trans. Electromagn. Compat. 54, 6 (2012)

    Article  Google Scholar 

  17. V.A. da Silva, M.C. Rezende, Mater. Res. 21, 1 (2018)

    Google Scholar 

  18. B.D. Che, B.Q. Nguyen, L.T.T. Nguyen et al., Chem. Cent. J. 9, 1 (2015)

    Article  CAS  Google Scholar 

  19. P. Bhattacharya, S. Sahoo, C.K. Das, Express Polym. Lett. 7, 212 (2012)

    Article  Google Scholar 

  20. E.A. Zakharychev, E.N. Razov, Yu.D. SemChikov et al., Bull. Mater. Sci. 39, 451 (2016)

    Article  CAS  Google Scholar 

  21. A. Mehdipour, I.D. Rosca, C.W. Trueman et al., IEEE Trans. Electromagn. Compat. 54, 28 (2012)

    Article  Google Scholar 

  22. W.S. Jou, H.Z. Cheng, C.F. Hsu, J. Alloys Compounds 434–435, 641 (2007)

    Article  Google Scholar 

  23. C. Chang et al., J. Lightwave Technol. 26, 1256 (2008)

    Article  CAS  Google Scholar 

  24. C.S. Zhang, Q.Q. Ni, S.Y. Fu, K. Kurashiki, Compos. Sci. Technol. 67, 2973 (2007)

    Article  CAS  Google Scholar 

  25. Z. Liu, G. Bai, Y. Huang et al., Carbon 45, 821 (2007)

    Article  CAS  Google Scholar 

  26. Y. Li, C. Chen, S. Zhang et al., Appl. Surface Sci. 254, 5766 (2008)

    Article  CAS  Google Scholar 

  27. K. Umishita, T. Okubo, N. Takuya, O. Hashimoto 2006 European Conference on Wireless Technology, Manchester, pp. 291–294.

  28. A. Balzano, I. M. De Rosa, F. Sarasini, M. S. Sarto 2007 IEEE International Symposium on Electromagnetic Compatibility, pp. 1–6.

  29. M. Koledintseva, P. C. Rawa, R. Dubroff, J. Drewniak, K. Rozanov, B. Archambeault 2005 International Symposium on Electromagnetic Compatibility, pp. 169–174.

  30. D.C. Tiwari, P. Dipak, S.K. Dwivedi et al., J. Mater. Sci. Mater. Electron. 29, 1643 (2018)

    Article  CAS  Google Scholar 

  31. Y.S. Song, J.R. Youn, Carbon 43, 1378 (2005)

    Article  CAS  Google Scholar 

  32. B.P. Sing, K. Saini, V. Choudhary et al., J. Nanopart. Res. 16, 2161 (2014)

    Article  Google Scholar 

  33. M.H. Al-Saleh, Synth. Met. 205, 78 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and analysis were performed by all authors. The first draft of the manuscript was written by corresponding author, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lekshmi Mohan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest/ Competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, L., Karakkad, S. & Krishnan, S.T. Development of lightweight carbon nanotube-based epoxy nanocomposite shield for broadband electromagnetic interference shielding: estimating shielding effectiveness and experimental validation. J Mater Sci: Mater Electron 32, 4437–4447 (2021). https://doi.org/10.1007/s10854-020-05185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05185-7

Navigation