Skip to main content
Log in

Synthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption property

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe3O4 nanodisks with plate and layered hierarchical nanostructure were successfully synthesized by the reduction of the layered α-Fe2O3 nanodisk. The microwave absorb ability could be well modulated by mainly tuning the nanostructure of the Fe3O4 nanodisks. The minimum reflection loss (RL) of layered Fe3O4 nanodisks reaches − 14.8 dB at an extremely low mass fraction (about 10%), which is better than − 10.0 dB obtained using plate Fe3O4 nanodisks. The dielectric loss plays a critical role in the structure-dependent RL ability, caused by the enhanced multiple reflections in the absorber and an increase of the dipoles, interfacial polarization, and the associated relaxation. Such layered Fe3O4 nanodisks open a new avenue to exploit new microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Wen, M.H. Cao, G.B. Sun, W.G. Xu, D. Wang, X.Q. Zhang, C.W. Hu, Hierarchical three-dimensional cobalt phosphate microarchitectures: large-scale solvothermal synthesis, characterization, and magnetic and microwave absorption properties. J. Phys. Chem. C 112, 15948 (2008)

    Article  CAS  Google Scholar 

  2. J Qu, Y Yu, CY Cao, WG Song (2013) Alpha-Fe2 O3 nanodisks: layered structure, growth mechanism, and enhanced photocatalytic property Chemistry 19: 11172

  3. Q. Zhou, B. Wang, P. Wang, C. Dellago, Y. Wang, Y. Fang, Nanoparticle-based crystal growth via multistep self-assembly CrystEngComm 15, 5114 (2013)

    CAS  Google Scholar 

  4. R. Qiu, X.L. Zhang, R. Qiao, Y. Li, Y.I. Kim, Y.S. Kang, CuNi dendritic material: synthesis, mechanism discussion, and application as glucose. Sens. Chem. Mater. 19, 4174 (2007)

    Article  CAS  Google Scholar 

  5. D. Chen, J. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 18, 1922 (2008)

    Article  CAS  Google Scholar 

  6. G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater. 23, 1587 (2011)

    Article  CAS  Google Scholar 

  7. C.Y. Cao, J. Qu, W.S. Yan, J.F. Zhu, Z.Y. Wu, W.G. Song, Low-cost synthesis of flowerlike alpha-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir 28, 4573 (2012)

    Article  CAS  Google Scholar 

  8. M. Basu, A.K. Sinha, M. Pradhan, S. Sarkar, A. Pal, T. Pal, Monoclinic CuO nanoflowers on resin support: recyclable catalyst to obtain perylene compound Chem. Commun. 46, 8785 (2010)

    CAS  Google Scholar 

  9. O.M. Bakr, B.H. Wunsch, F. Stellacci, High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem. Mater. 18, 3297 (2006)

    Article  CAS  Google Scholar 

  10. R.A. Meyer, J.J. Green, Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design. Wiley Inter. Rev. Nano. Nanobiotech. 8, 191 (2016)

    Article  CAS  Google Scholar 

  11. A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, S.A.A. Hamid, Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92, 876 (2002)

    Article  CAS  Google Scholar 

  12. D. Chen, G.S. Wang, S. He, J. Liu, L. Guo, M.S. Cao, Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A 1, 5996 (2013)

    Article  CAS  Google Scholar 

  13. R.F. Zhuo, L. Qiao, H.T. Feng et al., Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J. Appl. Phys. 104, 094101 (2008)

    Article  Google Scholar 

  14. J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequncies above one Mc/s. Physica 14, 207 (1948)

    Article  CAS  Google Scholar 

  15. X. Ren, H. Yang, J. Tang et al., An effective way to increase the high-frequency permeability of Fe3O4 nanorods. Nanoscale 8, 12910 (2016)

    Article  CAS  Google Scholar 

  16. N.N. Song, H.T. Yang, H.L. Liu et al., Exceeding natural resonance frequency limit of monodisperse Fe(3)O(4) nanoparticles via superparamagnetic relaxation Sci. Rep. 3, 3161 (2013)

    Google Scholar 

  17. X. Liu, C. Cui, T. Li, A. Xia, Y. Lv, Ni@C nanocapsules-decorated SrFe12O19 hexagonal nanoflakes for high-frequency microwave absorption. J. Alloys Compd. 678, 234 (2016)

    Article  CAS  Google Scholar 

  18. Y. Yin, M. Zeng, J. Liu et al., Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites Sci. Rep. 6, 25075 (2016)

    CAS  Google Scholar 

  19. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, XL Liang (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401 (2004)

    Article  CAS  Google Scholar 

  20. N.N. Song, H.T. Yang, X. Ren et al., Non-monotonic size change of monodisperse Fe(3)O(4) nanoparticles in the scale-up synthesis. Nanoscale 5, 2804 (2013)

    Article  CAS  Google Scholar 

  21. W. Li, B. Lv, L. Wang, G. Li, Y. Xu, Fabrication of Fe3O4@C core–shell nanotubes and their application as a lightweight microwave absorbent. RSC Adv. 4, 55738 (2014)

    Article  CAS  Google Scholar 

  22. X. Zhang, G. Ji, W. Liu et al., Thermal conversion of an Fe(3)O(4)@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932 (2015)

    Article  CAS  Google Scholar 

  23. L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance. Phys. Chem. Chem. Phys. 17, 5878 (2015)

    Article  CAS  Google Scholar 

  24. M. Zong, Y. Huang, Y. Zhao et al., Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Adv. 3, 23638–23648 (2013)

    Article  CAS  Google Scholar 

  25. B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8, 3730 (2016)

    Article  CAS  Google Scholar 

  26. S. Chikazumi, Physics of Magnetism (Wiley, New York, 1964).

    Google Scholar 

  27. H Yang, L Shen, L Zhao, et al. (2003) Magnetic properties of nanocrystalline Li0.5Fe2.1Cr0.4O4 ferrite. Mater. Lett. 57: 2455

  28. Y. Krupskaya, C. Mahn, A. Parameswaran et al., Magnetic study of iron-containing carbon nanotubes: feasibility for magnetic hyperthermia. J. Magn. Magn. Mater. 321, 4067 (2009)

    Article  CAS  Google Scholar 

  29. G.X.M. Shishou Kang, S. Shi, Z. Jia, D.E. Nikles, J.W. Harrell, Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. JACS 128(4), 1042 (2006)

    Article  Google Scholar 

  30. S. Roy, I. Dubenko, D.D. Edorh, N. Ali, Size induced variations in structural and magnetic properties of double exchange La0.8Sr0.2MnO3-δ nano-ferromagnet. J. Appl. Phys. 96, 1202 (2004)

    Article  CAS  Google Scholar 

  31. N.N. Song, S.Z. Gu, Q. Wu et al., Facile synthesis and high-frequency performance of CoFe2O4 nanocubes with different size. J. Magn. Magn. Mater. 451, 793 (2018)

    Article  CAS  Google Scholar 

  32. N.N. Song, S.Z. Gu, J. Zhou et al., Achieving a high cutting-off frequency in the oriented CoFe2O4 nanocubes. Appl. Phys. Lett. 111, 133108 (2017)

    Article  Google Scholar 

  33. B. Quan, G. Xu, W. Gu, J. Sheng, G. Ji, Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 297 (2019)

    Article  CAS  Google Scholar 

  34. Z. Xu, Y. Du, D. Liu et al., Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 11, 4268 (2019)

    Article  CAS  Google Scholar 

  35. N.N. Song, H.T. Yang, F.Y. Li et al., Interspacing dependence of spin-dependent variable range hopping for cold-pressed Fe3O4 nanoparticles. J. Appl. Phys. 113, 184–309 (2013)

    Article  Google Scholar 

  36. G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4-carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699 (2017)

    Article  CAS  Google Scholar 

  37. N.N. Song, Y.J. Ke, H.T. Yang et al., Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe(11.6)Si(1.4)C(0.2)H(1.7). Sci. Rep. 3, 2291 (2013)

    Article  Google Scholar 

  38. Y. Yang, X. Liu, Y. Yang et al., Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J. Mater. Chem. C 1, 2875 (2013)

    Article  CAS  Google Scholar 

  39. W. Xue, G. Yang, S. Bi, J. Zhang, Z.-L. Hou, Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 173, 521 (2021)

    Article  CAS  Google Scholar 

  40. Z. Deng, S. He, W. Wang et al., Construction of hierarchical SnO2@Fe3O4 nanostructures for efficient microwave absorption. J. Magn. Magn. Mater. 498, 166224 (2020)

    Article  CAS  Google Scholar 

  41. X. Zhang, Preparation and microwave absorption properties of polyaniline and magnetite core-shell-structured hybrid. Int. J. Polym. Sci. 2018, 1 (2018)

    Google Scholar 

  42. C. Fu, D. He, Y. Wang, X. Zhao, Enhanced microwave absorption properties of polyaniline-modified porous Fe3O4@C nanosheets. J. Mater. Sci.: Mater. Electron. 30, 11907 (2019)

    CAS  Google Scholar 

  43. S.W. Phang, N. Kuramoto, Microwave absorption property of polyaniline nanocomposites containing TiO2 and Fe3O4 nanoparticles after FeCl36H2O treatment. Polym. Composites 31, 516 (2010)

    Article  CAS  Google Scholar 

  44. Q. Qi, Y. Huang, M. Xu, X. Lei, X. Liu, Synthesis and microwave absorption properties of sandwich-type as a bridge. J. Mater. Sci.: Mater. Electron. 28, 15043 (2017)

    CAS  Google Scholar 

  45. W. Yang, X. Yang, X. Li et al., Construction and microwave absorption properties of core@double-shell structured Fe3O4@polyaniline@MnO2 nanospheres. NANO 15, 2050032 (2020)

    Article  CAS  Google Scholar 

  46. L. Wang, H. Xing, Z. Liu, Z. Shen, X. Sun, G. Xu, Synthesis and excellent microwave absorption properties of ZnO/Fe3O4/MWCNTs composites. NANO 11, 1650139 (2016)

    Article  CAS  Google Scholar 

  47. P. Zhou, M. J-h Chen, P.J. Liu, B. Li, X.-M. Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range. Int. J. Miner. Metall. Mater. 24, 804 (2017)

    Article  CAS  Google Scholar 

  48. G.B. Sun, X.Q. Zhang, M.H. Cao, B.Q. Wei, A.H.C. Wen, Facile synthesis, characterization, and microwave absorbability of CoO nanobelts and submicrometer spheres. J. Phys. Chem. C 113, 6948 (2009)

    Article  CAS  Google Scholar 

  49. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, A.Y.J. Chen, Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229 (2010)

    Article  CAS  Google Scholar 

  50. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, S. Sasaki, A millimeter-wave absorber based on gallium-substituted epsilon-iron oxide nanomagnets. Angew. Chem. Int. Ed. 8392 (2007)

Download references

Acknowledgments

This work was supported by the National Natural Sciences Foundation of China (Grant Nos. 51872021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningning Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ren, X., Wang, C. et al. Synthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption property. J Mater Sci: Mater Electron 32, 4404–4415 (2021). https://doi.org/10.1007/s10854-020-05183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05183-9

Navigation