Skip to main content

Advertisement

Log in

Effect of Na doping on structural, optical, and dielectric properties of SnSe polycrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, tin selenide has attracted vast research interest in many fields due to its unique properties. Here, Na-doped SnSe polycrystals were successfully synthesized using hydrothermal method. Single phase was exhibited by all the samples as revealed from X-ray diffraction (XRD). Scanning electron microscope (SEM) studies for undoped SnSe showed a 2D plate-like morphology and converted it into 3D flower-like morphology with increasing Na concentration. The optical bandgap values obtained using UV–VIS–NIR diffuse reflectance spectroscopy were found to decrease with increasing Na concentration. Dielectric and electrical modulus studies were carried out in the frequency range from 100 Hz to 10 MHz for temperatures from 323 to 523 K. Correlated barrier hopping (CBH) is a probable mechanism for the charge carriers in all the compositions of NaxSn1−xSe. The electrical modulus studies indicated an incomplete dielectric relaxation of the non-Debye type. The high values of the real part of permittivity and AC conductivity for the Na0.20Sn0.80Se sample have potential applications as capacitive energy-storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Shi, X. Tao, J. Zou, Z. Chen, Adv. Sci. 7, 1902923 (2020)

    CAS  Google Scholar 

  2. H.C. Hsueh, J.X. Li, C.H. Ho, Adv. Opt. Mater. 6, 1 (2018)

    Google Scholar 

  3. V.R. Minnam Reddy, S. Gedi, B. Pejjai, C. Park, J. Mater. Sci. Mater. Electron. 27, 5491 (2016)

    CAS  Google Scholar 

  4. F. Davitt, K. Stokes, T.W. Collins, M. Roldan-gutierrez, F. Robinson, H. Geaney, S. Biswas, S.L.Y. Chang, K.M. Ryan, G. Reid, J.D. Holmes, ACS Appl. Energy Mater. (2020). https://doi.org/10.1021/acsaem.0c00776

    Article  Google Scholar 

  5. D. Ni, Y. Chen, X. Yang, C. Liu, K. Cai, J. Alloys Compd. 737, 623 (2018)

    CAS  Google Scholar 

  6. A.G. Shiravizadeh, R. Yousefi, S.M. Elahi, S.A. Sebt, Phys. Chem. Chem. Phys. 19, 18089 (2017)

    CAS  Google Scholar 

  7. P. Mandal, B. Show, S.T. Ahmed, D. Banerjee, A. Mondal, J. Mater. Sci. Mater. Electron. 31, 4708 (2020)

    CAS  Google Scholar 

  8. K. Patel, G. Solanki, K. Patel, V. Pathak, P. Chauhan, Eur. Phys. J. B 92, 1–11 (2019)

    Google Scholar 

  9. K.A. Campbell, C.M. Anderson, Microelectron. J. 38, 52 (2007)

    CAS  Google Scholar 

  10. N.R. Mathews, Sol. Energy 86, 1010 (2012)

    CAS  Google Scholar 

  11. Z.Y. Chu, H.Q. Liu, C.H. Yuan, Y. Wang, W. Wang, H.Z. Cui, Y.J. Gu, Mater. Chem. Phys. 199, 464 (2017)

    CAS  Google Scholar 

  12. F.K. Butt, M. Mirza, C. Cao, F. Idrees, M. Tahir, M. Safdar, Z. Ali, M. Tanveer, I. Aslam, CrystEngComm 16, 3470 (2014)

    CAS  Google Scholar 

  13. Z.H. Ge, K. Wei, H. Lewis, J. Martin, G.S. Nolas, J. Solid State Chem. 225, 354 (2015)

    CAS  Google Scholar 

  14. L. Das, A. Guleria, S. Adhikari, RSC Adv. 5, 61390 (2015)

    CAS  Google Scholar 

  15. D. Feng, Z.H. Ge, D. Wu, Y.X. Chen, T. Wu, J. Li, J. He, Phys. Chem. Chem. Phys. 18, 31821 (2016)

    CAS  Google Scholar 

  16. T. Arokiya Mary, A.C. Fernandez, P. Sakthivel, J.G.M. Jesudurai, J. Mater. Sci. Mater. Electron. 27, 11041 (2016)

    CAS  Google Scholar 

  17. S.R. Popuri, M. Pollet, R. Decourt, F.D. Morrison, N.S. Bennett, J.W.G. Bos, J. Mater. Chem. C 4, 1685 (2016)

    CAS  Google Scholar 

  18. S. Wang, S. Hui, K. Peng, T.P. Bailey, X. Zhou, X. Tang, C. Uher, J. Mater. Chem. C 5, 10191 (2017)

    CAS  Google Scholar 

  19. Y. Li, X. Shi, D. Ren, J. Chen, L. Chen, Energies 8, 6275 (2015)

    CAS  Google Scholar 

  20. K. Tyagi, B. Gahtori, S. Bathula, N.K. Singh, S. Bishnoi, S. Auluck, A.K. Srivastava, A. Dhar, RSC Adv. 6, 11562 (2016)

    CAS  Google Scholar 

  21. M.L. Takeno, G.A. da Silva, D.M. Trichês, A. Ghosh, S.M. de Souza, J. Alloys Compd. 735, 489 (2018)

    CAS  Google Scholar 

  22. H. Liu, X. Zhang, S. Li, Z. Zhou, Y. Liu, J. Zhang, J. Electron. Mater. 46, 2629 (2017)

    CAS  Google Scholar 

  23. G. Tang, Q. Wen, T. Yang, Y. Cao, W. Wei, Z. Wang, Z. Zhang, Y. Li, RSC Adv. 7, 8258 (2017)

    CAS  Google Scholar 

  24. Y. Li, F. Li, J. Dong, Z. Ge, F. Kang, J. He, H. Du, B. Li, J.F. Li, J. Mater. Chem. C 4, 2047 (2016)

    CAS  Google Scholar 

  25. S.Z. Kang, L. Jia, X. Li, Y. Yin, L. Li, Y.G. Guo, J. Mu, Colloids Surf. A 406, 1 (2012)

    CAS  Google Scholar 

  26. B. Pejjai, V.R. Minnam Reddy, K. Seku, M.R. Pallavolu, C. Park, New J. Chem. 42, 4843 (2018)

    CAS  Google Scholar 

  27. W. Shi, M. Gao, J. Wei, J. Gao, C. Fan, E. Ashalley, H. Li, Z. Wang, Adv. Sci. 5, 1700602 (2018)

    Google Scholar 

  28. A.A. Azab, A.A. Ward, G.M. Mahmoud, E.M. El-Hanafy, H. El-Zahed, F.S. Terra, J. Semicond. 39, 123006 (2018)

    CAS  Google Scholar 

  29. S. Sagadevan, K. Pal, E. Hoque, Z.Z. Chowdhury, J. Mater. Sci. Mater. Electron. 28, 10902 (2017)

    CAS  Google Scholar 

  30. P.M.P. Suguna, D. Mangalamj, S.A.K. Narayandass, Phys. Status Solidi 155, 405 (1996)

    CAS  Google Scholar 

  31. D. Properties, T. Crystals, G.K. Solanki, K.D. Patel, N.N. Gosai, P. R. B, Res. J. Chem. Sci. 2, 43 (2012)

  32. G.K. Solanki, N.N. Gosai, K.D. Patel, Res. J. Chem. Sci. 5, 1 (2015)

    CAS  Google Scholar 

  33. S. Liang, J. Xu, J.G. Noudem, H. Wang, X. Tan, G.Q. Liu, H. Shao, B. Yu, S. Yue, J. Jiang, J. Mater. Chem. A 6, 23730 (2018)

    CAS  Google Scholar 

  34. E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A 4, 1848 (2016)

    CAS  Google Scholar 

  35. T.R. Wei, C.F. Wu, X. Zhang, Q. Tan, L. Sun, Y. Pan, J.F. Li, Phys. Chem. Chem. Phys. 17, 30102 (2015)

    CAS  Google Scholar 

  36. Z. Yang, W. Chen, C. Liu, J. Electron. Mater. 46, 2924 (2017)

    Google Scholar 

  37. T.R. Wei, G. Tan, X. Zhang, C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, M.G. Kanatzidis, J. Am. Chem. Soc. 138, 8875 (2016)

    CAS  Google Scholar 

  38. P. Boudjouk, D.J. Seidler, D. Grier, G.J. McCarthy, Chem. Mater. 8, 1189 (1996)

    CAS  Google Scholar 

  39. K. Assili, O. Gonzalez, K. Alouani, X. Vilanova, Arab. J. Chem. 13, 1229 (2020)

    CAS  Google Scholar 

  40. A.Y. Kuznetsov, R. MacHado, L.S. Gomes, C.A. Achete, V. Swamy, B.C. Muddle, V. Prakapenka, Appl. Phys. Lett. 94, 2 (2009)

    Google Scholar 

  41. N.A. García-Gómez, S.M.D. La Parra-Arcieniega, L.L. Garza-Tovar, L.C. Torres-González, E.M. Sánchez, J. Alloys Compd. 588, 638 (2014)

    Google Scholar 

  42. R. Shakoury, A. Arman, Ş Ţălu, D. Dastan, C. Luna, Opt. Quant. Electron. 52, 1 (2020)

    Google Scholar 

  43. N. Ghobadi, F. Hafezi, S. Naderi, F. Amiri, C. Luna, A. Arman, R. Shakoury, S. Talu, S. Rezaee, M. Habibi, M. Mardani, Semiconductors 53, 1751 (2019)

    CAS  Google Scholar 

  44. B. Parveen, M. Hassan, S. Atiq, S. Riaz, S. Naseem, M.A. Toseef, Prog. Nat. Sci. Mater. Int. 27, 303 (2017)

    CAS  Google Scholar 

  45. S. Meti, S. Prutvi, H.M.R. Rahman, U.K. Bhat, Appl. Phys. A 125, 1 (2019)

    Google Scholar 

  46. R. Shakoury, S. Rezaee, F. Mwema, C. Luna, Opt. Quant. Electron. 52, 95 (2020)

    CAS  Google Scholar 

  47. H.A. Hashem, S. Abouelhassan, Chin. J. Phys. 43, 955 (2005)

    CAS  Google Scholar 

  48. K. Khurana, N. Jaggi, J. Mater. Sci. Mater. Electron. 31, 10334 (2020)

    CAS  Google Scholar 

  49. M.G. Todd, F.G. Shi, IEEE Trans. Components Packag. Technol. 26, 667 (2003)

    CAS  Google Scholar 

  50. K.W. Wagner, Ann. Phys. 345, 817 (1913)

    Google Scholar 

  51. B. Parveen, M. Hassan, S. Atiq, S. Riaz, S. Naseem, S. Zaman, J. Mater. Sci. 52, 7369 (2017)

    CAS  Google Scholar 

  52. B. Cai, J. Li, H. Sun, P. Zhao, F. Yu, L. Zhang, D. Yu, Y. Tian, B. Xu, J. Alloys Compd. 727, 1014 (2017)

    CAS  Google Scholar 

  53. T. Šalkus, E. Kazakevičius, J. Banys, M. Kranjčec, A.A. Chomolyak, Y.Y. Neimet, I.P. Studenyak, Solid State Ion. 262, 597 (2014)

    Google Scholar 

  54. S.R. Elliott, Philos. Mag. 36, 1291 (1977)

    CAS  Google Scholar 

  55. A. Bagum, M.B. Hossen, F. Chowdhury, Ferroelectrics 494, 19 (2016)

    CAS  Google Scholar 

  56. M. Mumtaz, M. Naveed, S. Akhtar, M. Imran, M.N. Khan, J. Supercond. Nov. Magn. 31, 2691 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors N. Manjula and B. Sobha would like to acknowledge the Director, ARCI, Hyderabad, for the support in dielectric measurements and the Centre for Automation and Instrumentation (CAI), National Institute of Technology, Warangal, for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobha Bathulapalli.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerella, M., Suresh, M.B. & Bathulapalli, S. Effect of Na doping on structural, optical, and dielectric properties of SnSe polycrystals. J Mater Sci: Mater Electron 32, 4347–4362 (2021). https://doi.org/10.1007/s10854-020-05177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05177-7

Navigation