Skip to main content
Log in

Effect of oxygen partial pressure on the behavior of Ga-doped ZnO/p-Si heterojunction diodes fabricated by reactive sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A systematic investigation of Ga-doped ZnO (GZO) films deposited by radio frequency reactive magnetron co-sputtering of Zn and GaAs has been carried out toward the realization of n-GZO/p-Si heterojunction diodes. X-ray diffraction and X-ray photoelectron spectroscopy studies of these films have shown a strong dependence of the c-axis orientation of crystallites, Ga/Zn ratio, oxygen vacancies and chemisorbed oxygen species on the partial pressure (percentage) of oxygen in the Ar-O2 sputtering atmosphere. The GZO films deposited at low O2 percentage (≤ 6%) exhibit Ga/Zn ratio ~ 0.03 and consequently high conductivity ~ 103 Ω−1 cm−1 with carrier concentration > 1020 cm−3, leading to the formation of non-rectifying contact with p-Si. A significant finding of the present study is that the doping level and conductivity of GZO layer can be controlled by O2 percentage in sputtering atmosphere, which has been utilized to fabricate heterojunction diodes with GZO films deposited above 6% O2, which possess low Ga/Zn ratio ~ 0.01 and carrier concentration ≤1019 cm−3. In particular, the diode fabricated with 8% O2 displays ideality factor ~ 7 and reverse saturation current ~ 2 × 10–6 A, along with improved turn-on-voltage and series resistance. The nearly complete c-axis orientation, absence of oxygen vacancies and presence of chemisorbed oxygen at the grain boundaries in GZO layer appear to facilitate improved diode performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Ellmer, Nat. Photon. 6, 809–817 (2012)

    Article  CAS  Google Scholar 

  2. Ü. Özgür, I. Alivov Ya, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoçd, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  3. T. Minami, Semicond. Sci. Technol. 20, S35–S44 (2005)

    Article  CAS  Google Scholar 

  4. H.B. Saim, D.S. Campbell, Solar Energy Mater. 15, 249–260 (1987)

    Article  CAS  Google Scholar 

  5. P. Mondal, D. Das, Appl. Surf. Sci. 411, 315–320 (2017)

    Article  CAS  Google Scholar 

  6. Y.B. Li, Y. Bando, D. Golberg, Appl. Phys. Lett. 84, 3603 (2004)

    Article  CAS  Google Scholar 

  7. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thin Solid Films 619, 41–47 (2016)

    Article  CAS  Google Scholar 

  8. S. Major, K.L. Chopra, Solar Energy Mater. 17(5), 319–327 (1988)

    Article  CAS  Google Scholar 

  9. H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Adv. Mater. 14, 158 (2002)

    Article  CAS  Google Scholar 

  10. Z.L. Wang, Mater. Today 7(26), 2004 (2004)

    Google Scholar 

  11. K.R. Kelly, K. Shi, S. Back, L. Vallez, S.Y. Park, S. Siahrostami, X. Zheng, J.K. Nørskov, ACS Catal. 9, 4593–4599 (2019)

    Article  CAS  Google Scholar 

  12. D.C. Look, Mater. Sci. Eng., B 80, 383–387 (2001)

    Article  Google Scholar 

  13. C.L. Hsu, K.C. Chen, J. Phys. Chem. C 116, 9351 (2012)

    Article  CAS  Google Scholar 

  14. Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu, I.C. Chen, Adv. Funct. Mater. 13, 811 (2003)

    Article  CAS  Google Scholar 

  15. Y.W. Heo, Y.W. Kwon, Y. Li, S.J. Pearton, D.P. Norton, Appl. Phys. Lett. 84, 3474 (2004)

    Article  CAS  Google Scholar 

  16. W.S. Noh, J.A. Lee, J.H. Lee, Y.W. Heo, J.J. Kim, Ceram. Int. 42, 4136–4142 (2016)

    Article  CAS  Google Scholar 

  17. G. Akgul, F.A. Akgul, H.E. Unalan, R. Turan, Philos Mag 96, 1093–1109 (2016)

    Article  CAS  Google Scholar 

  18. S.Y. Tsai, M.H. Hon, Y.M. Lu, Solid-State Electron. 63, 37–41 (2011)

    Article  CAS  Google Scholar 

  19. M. Guziewicz, R. Schifano, E. Przezdziecka, J.Z. Domagala, W. Jung, T.A. Krajewski, E. Guziewicz, Appl. Phys. Lett. 107, 101105 (2015)

    Article  Google Scholar 

  20. F.L. Schein, H.V. Wenckstern, M. Grundmann, Appl. Phys. Lett. 102, 092109 (2013)

    Article  Google Scholar 

  21. J. Huang, L.J. Wang, K. Tang, J.J. Zhang, Y.B. Xia, X.G. Lu, Appl. Surf. Sci. 258, 2010–2013 (2012)

    Article  CAS  Google Scholar 

  22. T.A. Krajewski, P. Stallinga, E. Zielony, K. Goscinski, P. Kruszewski, L. Wachnicki, T. Aschenbrenner, D. Hommel, E. Guziewicz, M. Godlewski, J Appl. Phys. 113, 194504 (2013)

    Article  Google Scholar 

  23. F.A. Akgul, G. Akgul, R. Turan, H.E. Unalan, J. Am. Ceram. Soc. 99, 2497–2503 (2016)

    Article  Google Scholar 

  24. W.I. Park, G.C. Yi, J.W. Kim, S.M. Park, Appl. Phys. Lett. 82, 4358 (2003)

    Article  CAS  Google Scholar 

  25. T.L. Tansley, S.J.T. Owen, J. Appl. Phys. 55, 454 (1984)

    Article  CAS  Google Scholar 

  26. S. Sharma, C. Periasamy, Superlatt. Microstruc. 73, 12–21 (2014)

    Article  CAS  Google Scholar 

  27. S. Paul, J. Sultanaa, A. Bhattacharyya, A. Karmakar, S. Chattopadhyay, Optik 164, 745–752 (2018)

    Article  CAS  Google Scholar 

  28. H.Y. Kim, J.H. Kim, M.O. Park, S. Im, Thin Solid Films 398–399, 93–98 (2001)

    Article  Google Scholar 

  29. F. Chaabouni, M. Abaab, B. Rezig, Superlatt. Microstruc. 39, 171–178 (2006)

    Article  CAS  Google Scholar 

  30. D. Song, D.-H. Neuhaus, J. Xia, A.G. Aberle, Thin Solid Films 422, 180 (2002)

    Article  CAS  Google Scholar 

  31. S. Majumdar, P. Banerji, J. Appl. Phys. 105, 043704 (2009)

    Article  Google Scholar 

  32. S. Ilican, K. Gorgun, S. Aksoy, Y. Caglar, M. Caglar, J. Mol. Struct. 1156, 675–683 (2018)

    Article  CAS  Google Scholar 

  33. H. Qi, Q. Li, C. Wang, L. Zhang, L. Lv, Vacuum 81, 943 (2007)

    Article  CAS  Google Scholar 

  34. S.H. Chang, H.M. Cheng, C.L. Tien, S.C. Lin, K.P. Chuang, Opt. Mater. 38, 87–91 (2014)

    Article  CAS  Google Scholar 

  35. K. Ellmer, A. Bikowski, J. Phys. D 49, 413002 (2016)

    Article  Google Scholar 

  36. Y. Liu, Y. Li, H. Zeng, J. Nanomater. 2013, 196521 (2013)

    Google Scholar 

  37. T. Nama, C.W. Lee, H.J. Kima, Appl. Surf. Sci. 295, 260–265 (2014)

    Article  Google Scholar 

  38. S.-M. Park, T. Ikegami, K. Ebihara, P.-K. Shin, Appl. Surf. Sci. 253, 1522–1527 (2006)

    Article  CAS  Google Scholar 

  39. V. Bhosle, A. Tiwari, J. Narayan, Appl. Phys. Lett. 88, 032106 (2006)

    Article  Google Scholar 

  40. D.C. Look, T.C. Droubay, S.A. Chambers, Appl. Phys. Lett. 101, 102101 (2012)

    Article  Google Scholar 

  41. S. Chen, G. Carraro, D. Barreca, J. Mater. Chem. A 3, 13039–13049 (2015)

    Article  CAS  Google Scholar 

  42. S. Kuprenaite, T. Murauskas, A. Abrutis, V. Kubilius, Z. Saltyte, V. Plausinaitiene, Surf. Coat. Technol. 271, 156–164 (2015)

    Article  CAS  Google Scholar 

  43. H.Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, A.B. Yankovich, A.V. Kvit, P.M. Voyles, H. Morkoc, J. Appl. Phys. 111, 103713 (2012)

    Article  Google Scholar 

  44. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, H.M.X. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)

    Article  Google Scholar 

  45. J.L. Zhao, X.W. Sun, H. Ryu, Y.B. Moon, Opt. Mater. 33, 768–772 (2011)

    Article  CAS  Google Scholar 

  46. K. Saito, Y. Hiratsuka, A. Omata, H. Makino, S. Kishimoto, T. Yamamoto, N. Horiuchi, H. Hirayam, Superlattices Microstruct. 42, 172–175 (2007)

    Article  CAS  Google Scholar 

  47. Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H.-Y. Wang, J. Volk, J. Appl. Surf. Sci. 379, 304–308 (2016)

    Article  Google Scholar 

  48. P.K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, J. Phys. D 42, 035102 (2009)

    Article  Google Scholar 

  49. H. Fujiwara, M. Kondo, Phys. Rev. B 71, 075109 (2005)

    Article  Google Scholar 

  50. P. Mondal, D. Das, Appl. Surf. Sci. 286, 397–404 (2013)

    Article  CAS  Google Scholar 

  51. S. Kim, W.I. Lee, E.H. Lee, S.K. Hwang, C. Lee, J. Mater. Sci. 42, 4845–4849 (2007)

    Article  CAS  Google Scholar 

  52. P.K. Song, M. Watanabe, M. Kon, A. Mitsui, Y. Shigesato, Thin Solid Films 411, 82–86 (2002)

    Article  CAS  Google Scholar 

  53. C.E. Kim, P. Moon, S. Kim, J.M. Myoung, H.W. Jang, J. Bang, I. Yun, Thin Solid Films 518, 6304–6307 (2010)

    Article  CAS  Google Scholar 

  54. D. Das, P. Mondal, Physica E 91, 1–7 (2017)

    Article  CAS  Google Scholar 

  55. Q.-B. Ma, Z.-Z. Ye, H.-P. He, L.-P. Zhu, J.R. Wang, B.-H. Zhao, Mater. Lett. 61, 2460–2463 (2007)

    Article  CAS  Google Scholar 

  56. Q.-B. Ma, Z.-Z. Ye, H.-P. He, L.-P. Zhu, W.-C. Liu, Y.-F. Yang, L. Gong, J.-Y. Huang, Y.-Z. Zhang, B.-H. Zhao, J. Phys. D 41, 055302 (2008)

    Article  Google Scholar 

  57. X. Bie, J.G. Lu, L. Gong, L. Lin, B.H. Zhao, Z.Z. Ye, Appl. Surf. Sci. 256, 289–293 (2009)

    Article  CAS  Google Scholar 

  58. D. Singh, S. Singh, U. Kumar, R.S. Srinivasa, S.S. Major, Thin Solid Films 555, 126–130 (2014)

    Article  CAS  Google Scholar 

  59. S.K. Appani, A.K. Yadav, D.S. Sutar, S.N. Jha, D. Bhattacharyya, S.S. Major, Thin Solid Films 701, 137966 (2020)

    Article  CAS  Google Scholar 

  60. D.O. Demchenko, B. Earles, H.Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Phys. Rev. B 84, 075201 (2011)

    Article  Google Scholar 

  61. N.A. Estrich, D.H. Hook, A.N. Smith, J.T. Leonard, B. Laughlin, J.P. Maria, J. Appl. Phys. 113, 233703 (2013)

    Article  Google Scholar 

  62. S. Liang, X. Bi, J. Appl. Phys. 104, 113533 (2008)

    Article  Google Scholar 

  63. Y.P. Xia, P. Wang, S. Shi, G. He, M. Zhang, J. Lü, Z. Sun, Int. J. Minerals Metall. Mater. 24, 675 (2017)

    Article  CAS  Google Scholar 

  64. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Ceram. Int. 42, 10066–10070 (2016)

    Article  CAS  Google Scholar 

  65. H.M. Chiu, Y.T. Chang, W.W. Wu, J.M. Wu, ACS Appl. Mater. Interfaces 6, 5183–5191 (2014)

    Article  CAS  Google Scholar 

  66. R. Saha, A. Das, A. Karmakar, S. Chattopadhyay, Adv. Mater. Proceed. 3(4), 298–303 (2018)

    Article  Google Scholar 

  67. B.S. Kang, H.T. Wang, F. Ren, S.J. Pearton, J. Appl. Phys. 104, 031101 (2008)

    Article  Google Scholar 

  68. A. Drici, G. Djeteli, G. Tchangbedji, H. Derouiche, K. Jondo, K. Napo, J.C. Bernède, S. Ouro-Djobo, M. Gbagba, Phys. Status Solidi A 201, 1528 (2004)

    Article  CAS  Google Scholar 

  69. J.D. Lee, C.Y. Park, H.S. Kim, J.J. Lee, Y.J. Choo, J. Phys. D: Appl. Phys. 43, 365403 (2010)

    Article  Google Scholar 

  70. S. Aksoy, Y. Caglar, Superlattices Microstruct. 51, 613–625 (2012)

    Article  CAS  Google Scholar 

  71. G.C. Park, S.M. Hwang, J.H. Lim, J. Joo, Nanoscale 6, 1840 (2014)

    Article  CAS  Google Scholar 

  72. Q.Q. Li, C. Wang, L. Zhang, L. Lv, Vacuum 81, 943 (2007)

    Article  Google Scholar 

  73. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85–87 (1986)

    Article  CAS  Google Scholar 

  74. D. Song, D.-H. Neuhaus, J. Xia, A.G. Aberle, Thin Solid Films 422, 180 (2002)

    Article  CAS  Google Scholar 

  75. M.K. Hudait, P. Venkateswarlu, S.B. Krupanidhi, Solid State Electron 45, 133 (2001)

    Article  CAS  Google Scholar 

  76. X.D. Chen, C.C. Ling, S. Fung, C.D. Beling, Appl Phys Lett 88, 132104 (2006)

    Article  Google Scholar 

  77. Y. Choi, K. Lee, C.H. Park, K.H. Lee, J.W. Nam, M.M. Sung, K.M. Lee, H.C. Sohn, S. Im, J. Phys. D: Appl. Phys. 43, 345101 (2010)

    Article  Google Scholar 

  78. D. Das, P. Mondal, RSC Adv. 4, 35735–35743 (2014)

    Article  CAS  Google Scholar 

  79. X. Song, J. Ji, T. Wu, Y. Tian, B. Han, X. Liu, H. Wang, Y. Gui, Y. Ding, Y. Wang, Sol Energy Mater. Sol Cells 190, 6–11 (2019)

    Article  Google Scholar 

  80. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Chastian, J Perkin (ed.), Elmer Corporation Physical Elctronis Division USA 1992

  81. Z.-L. Lu, W.-Q. Zou, M.-X. Xu, F.-M. Zhang, Y.-W. Du, Chin. Phys. Lett. 26, 116102 (2009)

    Article  Google Scholar 

  82. P. Mondal, D. Das, Phys. Chem. Chem. Phys. 18, 20450–20458 (2016)

    Article  CAS  Google Scholar 

  83. E. De la Rosa, S. Sepu´lveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo, M.J. Yacaman, J. Phys. Chem. C 111, 8489–8495 (2007)

    Article  Google Scholar 

  84. J.J.C. Fan, J.B. Goodenough, J. Appl. Phys. 48, 3524–3531 (1977)

    Article  CAS  Google Scholar 

  85. S. Chen, G. Carraro, D. Barreca, A. Sapelkin, W. Chen, X. Huang, Q. Cheng, F. Zhang, R. Binions, J. Mater. Chem. 3, 13039–13049 (2015)

    Article  CAS  Google Scholar 

  86. C.S. Lee, C.H. Jeon, B.T. Lee, S.H. Jeong, J. Alloys. Compd. 742, 977–985 (2018)

    Article  CAS  Google Scholar 

  87. M.J. Lee, J. Lim, J. Bang, W. Lee, J.M. Myoung, Appl. Surf. Sci. 255, 3195–3200 (2008)

    Article  CAS  Google Scholar 

  88. Y. Sun, X. Yan, X. Zheng, Y. Liu, Y. Zhao, Y. Shen, Q. Liao, Y. Zhang, ACS Appl. Mater. Interfaces 7, 7382 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Hall Measurement Central Facility, Central Surface Analytical Facility and HRXRD Central Facility of IIT Bombay for Hall, XPS and XRD measurements, respectively. M. Monish is thanked for the help in electrical and optical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praloy Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, P., Appani, S.K., Sutar, D.S. et al. Effect of oxygen partial pressure on the behavior of Ga-doped ZnO/p-Si heterojunction diodes fabricated by reactive sputtering. J Mater Sci: Mater Electron 32, 4248–4257 (2021). https://doi.org/10.1007/s10854-020-05169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05169-7

Navigation