Skip to main content
Log in

A novel green‐emitting SrLaAlO4:Er3+ phosphor synthesized by co‐precipitation method for w-LEDs and optical thermometry

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel green-emitting Er3+ doped SrLaAlO4 phosphor has been synthesized successfully through one-step calcination of the precursor prepared by co-precipitation method. Meanwhile, the electronic structure and photoluminescence (PL) properties of the samples are investigated in detail. It is found that the strongest excitation peak among the several narrow excitation bands from 250 nm to 500 nm locates in near-UV region, indicating that the phosphor can match well with not only blue LED chips but also near-UV LED chips. Under the excitation of 377 nm light, the SrLaAlO4 phosphor can emit bright green light peaking at 527 nm and 548 nm simultaneously. In addition, the different responses of the two emission positions to temperature variation of SrLaAlO4:Er3+ phosphor have been verified and expounded. The temperature sensing properties of SrLaAlO4:Er3+ in a wide range of 298–573 K show a good exponential function relationship between ratiometric intensity and temperature (R2 > 0.999) as well as a high sensitivity (1.42% K− 1). Besides, the CIE coordinates diagram shows that this phosphor has an outstanding color stability. In view of the outstanding performance in the PL, thermal stability and sensitivity, SrLaAlO4:Er3+ phosphor can be promisingly applied in near ultraviolet converted white light LED devices (wLEDs) and optical thermometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Xiang, X. Liang, P. Li, X. Di, W. Xiang, A thermally stable warm WLED obtained by screen-printing a red phosphor layer on the LuAG:Ce3+ PiG substrate. Chem. Eng. J. 306, 858–865 (2016)

    Article  CAS  Google Scholar 

  2. Y. Wang, J. Ding, Y. Li, X. Ding, Y. Wang, Preparation, crystal structure and photoluminescence properties of Ce3+ activated Ba3Y1 – yLuyAl2O7.5 phosphors for near-UV LEDs. Chem. Eng. J. 315, 382–391 (2017)

    Article  CAS  Google Scholar 

  3. Q. Cheng, F. Ren, Q. Lin, H. Tong, X. Miao, High quantum efficiency red emitting α-phase La2W2O9:Eu3+ phosphor. J. Alloy. Compd. 772, 905–911 (2019)

    Article  CAS  Google Scholar 

  4. X. Huang, B. Li, H. Guo, D. Chen, Molybdenum-doping-induced photoluminescence enhancement in Eu3+ -activated CaWO4 red-emitting phosphors for white light-emitting diodes. Dyes Pigm. 143, 86–94 (2017)

    Article  CAS  Google Scholar 

  5. X. Huang, H. Guo, B. Li, Eu3+-activated Na2Gd(PO4)(MoO4): A novel high-brightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes. J. Alloy. Compd. 720, 29–38 (2017)

    Article  CAS  Google Scholar 

  6. W.B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B.F. Chmelka, S.P. DenBaars, R. Seshadri, Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting. Adv Mater 23, 2300–2305 (2011)

    Article  CAS  Google Scholar 

  7. Z. Xia, A. Meijerink, Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 46, 275–299 (2017)

    Article  CAS  Google Scholar 

  8. X. Ji, J. Zhang, Y. Li, S. Liao, X. Zhang, Z. Yang, Z. Wang, Z. Qiu, W. Zhou, L. Yu, S. Lian, Improving Quantum Efficiency and Thermal Stability in Blue-Emitting Ba2 – xSrxSiO4:Ce3+ Phosphor via Solid Solution. Chem. Mater. 30, 5137–5147 (2018)

    Article  CAS  Google Scholar 

  9. X. Zhang, Z. Zhu, Z. Guo, Z. Sun, Y. Chen, A ratiometric optical thermometer with high sensitivity and superior signal discriminability based on Na3Sc2P3O12: Eu2+, Mn2+ thermochromic phosphor. Chem. Eng. J. 356, 413–422 (2019)

    Article  CAS  Google Scholar 

  10. H. Chen, Y. Wang, Photoluminescence and cathodoluminescence properties of novel rare-earth free narrow-band bright green-emitting ZnB2O4:Mn2+ phosphor for LEDs and FEDs. Chem. Eng. J. 361, 314–321 (2019)

    Article  CAS  Google Scholar 

  11. N. Rong-Jun Xie*, M. Hirosaki, Y. Mitomo, T. Yamamoto, Suehiro, Optical properties of Eu2+ in α-SiAlON. J. Phys. Chem. B 108, 12027–12031 (2004)

    Article  Google Scholar 

  12. X. Wang, Z. Zhao, Q. Wu, Y. Li, Y. Wang, A. Garnet-Based, Ca2YZr2Al3O12:Eu(3+) Red-Emitting Phosphor for n-UV Light Emitting Diodes and Field Emission Displays: Electronic Structure and Luminescence Properties. Inorg. Chem. 55, 11072–11077 (2016)

    Article  CAS  Google Scholar 

  13. A. Lakshmanan, R.S. Kumar, V. Sivakumar, P.C. Thomas, M.T. Jose, Synthesis, photoluminescence and thermal quenching of YAG:Ce phosphor for white light emitting diodes. Indian journal of pure & applied physics 49, 303–307 (2011)

    CAS  Google Scholar 

  14. C. Yue, W. Wang, Q. Wang, Y. Jin, Synthesis and luminescence properties of Ba2Gd2Si4O13:Ce3+ phosphor for UV light-emitting diodes. J. Alloy. Compd. 683, 575–578 (2016)

    Article  CAS  Google Scholar 

  15. Y.H. Kim, P. Arunkumar, B.Y. Kim, S. Unithrattil, E. Kim, S.H. Moon, J.Y. Hyun, K.H. Kim, D. Lee, J.S. Lee, W.B. Im, A zero-thermal-quenching phosphor. Nat. Mater. 16, 543–550 (2017)

    Article  CAS  Google Scholar 

  16. X. Zhang, Z. Zhu, Z. Guo, F. Mo, Z. Wu, A zero-thermal-quenching and color-tunable phosphor LuVO4: Bi3+, Eu3+ for NUV LEDs. Dyes Pigm. 156, 67–73 (2018)

    Article  CAS  Google Scholar 

  17. X. Fan, W. Chen, S. Xin, Z. Liu, M. Zhou, X. Yu, D. Zhou, X. Xu, J. Qiu, Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps. Journal of Materials Chemistry C 6, 2978–2982 (2018)

    Article  CAS  Google Scholar 

  18. Z. Pan, X. Dai, Y. Lei, H. Cai, J.M. Serres, M. Aguiló, F. Díaz, J. Ma, D. Tang, E. Vilejshikova, U. Griebner, V. Petrov, P. Loiko, X. Mateos, Crystal growth and properties of the disordered crystal Yb:SrLaAlO4: a promising candidate for high-power ultrashort pulse lasers. CrystEngComm 20, 3388–3395 (2018)

    Article  CAS  Google Scholar 

  19. W. Ryba-Romanowski, S. Golab, W.A. Pisarski, G. Dominiak-Dzik, M. Berkowski, A.Pajaczkowska, INVESTIGATION OF Eu3+ SITES IN SrLaGa3O7, SrLaGaO4 AND SrLaAlO4 CRYSTALS. J. Phys. Chem. Solids 58, 639–645 (1997)

    Article  CAS  Google Scholar 

  20. M.L.H.t. Heerdt, E.v.d Kolk, W.M. Yen, A.M. Srivastava, Vacuum ultraviolet spectroscopy of Pr3+ in CaAl4O7, LaMgAl11O19 and SrLaAlO4. J. Lumin. 100, 107–113 (2002)

    Article  Google Scholar 

  21. S.-D. Liu, L.-L. Dong, L.-H. Zheng, M. Berkowski, L.-B. Su, T.-Q. Ren, Y.-D. Peng, J. Hou, B.-T. Zhang, J.-L. He, High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser, Applied Physics Express, 9 (2016)

  22. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie - Crystalline Materials, 220 (2005)

  23. P. John, K. Perdew, M. Burke, Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  24. B. Wang, Z. Wang, Y. Liu, T. Yang, Z. Huang, M. Fang, Crystal structure tailoring and luminescence tuning of Sr1 – xBaxAl2Si2O8:Eu2+ phosphors for white-light-emitting diodes, Journal of Alloys and Compounds, 776 (2019)

  25. D. Deng, H. Yu, Y. Li, Y. Hua, G. Jia, S. Zhao, H. Wang, L. Huang, Y. Li, C. Li, S. Xu, Ca4(PO4)2O:Eu2+ red-emitting phosphor for solid-state lighting: structure, luminescent properties and white light emitting diode application, Journal of Materials Chemistry C, 1 (2013)

  26. G.Blasse, Energy transfer in oxidic phosphors, Physics Letters A, 28 (1968) 444–4455

  27. X. Huang, H. Guo, LiCa3MgV3O12:Sm3+: A new high-efficiency white-emitting phosphor. Ceram. Int. 44, 10340–10344 (2018)

    Article  CAS  Google Scholar 

  28. G. Blass, J. Solid state Chem, (1986) 207–211

  29. L.G.V. Uitert, Characterization of Energy Transfer. J. Electrochem. Soc. 114, 1048–1053 (1967)

    Article  Google Scholar 

  30. L. Ozawa, P.M. Jaffe, The Mechanism of the Emission Color Shift with Activator Concentration in Eu + 3 Activated Phosphors. J. Electrochem. Soc. 118, 1678–1679 (1971)

    Article  CAS  Google Scholar 

  31. H. Berthou, C.K. Jorgensen, Optical-fiber temperature sensor based on upconversion-excited fluorescence. OPTICS LETTERS 15, 1100–1102 (1990)

    Article  CAS  Google Scholar 

  32. T. Xia, Y. Cui, Y. Yang, G. Qian, A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF. Journal of Materials Chemistry C 5, 5044–5047 (2017)

    Article  CAS  Google Scholar 

  33. C. Yue, D. Zhu, Q. Yana, Y. Pu, A red-emitting Sr3La(1–x)Eux(AlO)3(BO3)4 phosphor with high thermal stability and color purity for near-UV-excited wLEDs. RSC Advances 9, 26364–26372 (2019)

    Article  CAS  Google Scholar 

  34. Z. Chen, Y. Pan, L. Xi, R. Pang, S. Huang, G. Liu, Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3. Inorganic Chemistry 55, 11249–11257 (2016)

    Article  CAS  Google Scholar 

  35. S.A. Wade, S.F. Collins, G.W. Baxter, Fluorescence intensity ratio technique for optical fiber point temperature sensing, Journal of Applied Physics, 94 (2003)

  36. Z. Antic, M.D. Dramicanin, K. Prashanthi, D. Jovanovic, S. Kuzman, T. Thundat, Pulsed Laser Deposited Dysprosium-Doped Gadolinium-Vanadate Thin Films for Noncontact, Self-Referencing Luminescence Thermometry. Adv Mater 28, 7745–7752 (2016)

    Article  CAS  Google Scholar 

  37. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424–4442 (1968)

    Article  CAS  Google Scholar 

  38. T. Chuasaard, A. Ngamjarurojana, S. Surinwong, T. Konno, S. Bureekaew, A. Rujiwatra, Lanthanide Coordination Polymers of Mixed Phthalate/Adipate for Ratiometric Temperature Sensing in the Upper-Intermediate Temperature Range. Inorg. Chem. 57, 2620–2630 (2018)

    Article  CAS  Google Scholar 

  39. H. Li, Y. Zhang, L. Shao, Z. Htwe, P. Yuan, Ratiometric temperature sensing based on non-thermal coupling levels in BaZrO3: Yb3+/Er3+ ceramics, Optical Materials Express, 7 (2017)

  40. X. Zhang, Y. Huang, M. Gong, Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing. Chem. Eng. J. 307, 291–299 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachuan Zhu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Pu, Y., Zhu, D. et al. A novel green‐emitting SrLaAlO4:Er3+ phosphor synthesized by co‐precipitation method for w-LEDs and optical thermometry. J Mater Sci: Mater Electron 32, 4228–4238 (2021). https://doi.org/10.1007/s10854-020-05167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05167-9

Navigation