Skip to main content
Log in

Charge trapping characteristics of sputter-AlOx/ALD Al2O3/Epitaxial-GaAs-based non-volatile memory

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a novel memory capacitor structure has been presented with AlOx/Al2O3 bilayer dielectrics on high mobility Epitaxial-GaAs substrate. We have demonstrated the chemical and electrical properties of metal–electrode/AlOx/Al2O3/epi-GaAs-based memory device in detail. Sputter-grown non-stoichiometric AlOx has been used for both the charge trapping layer and blocking layer due to its intrinsic charge trapping capability and high bandgap. Ultra-thin tunneling layer of thicknesses 5 nm and 15 nm were prepared by atomic layer deposition technique and memory properties were compared on promising high mobility Epitaxial-GaAs/Ge heterostructure. The proposed device shows excellent charge trapping properties with a maximum memory window of 3.2 V at sweep voltage of ± 5 V, with good endurance and data retention properties. Oxygen-deficient AlOx layer acted as a charge trapping layer without any additional blocking layer which is impressive for non-volatile memory application on high mobility epi-GaAs substrate. In addition, density Functional Theory (DFT) has been employed to understand the physical origin of the intrinsic charge trapping defects in AlOx dielectric layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.J. Ritenour, J.W. Boucher, R. Delancey, A.L. Greenaway, S. Aloni, S.W. Boettcher, Energy Environ. Sci. 8, 278 (2015)

    Article  CAS  Google Scholar 

  2. T. Ashley, A.B. Dean, C.T. Elliott, G.J. Pryce, A.D. Johnson, H. Willis, Appl. Phys. Lett. 66, 481 (1995)

    Article  CAS  Google Scholar 

  3. H.H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin, J. Liu, J. Xiang, Z. Kong, W. Xiong, J. Li, H. Cui, J. Gao, H. Yang, Y. Du, B. Xu, B. Li, X. Zhao, J. Yu, Y. Dong, G. Wang, Nanomaterials 10, 1 (2020)

    Article  Google Scholar 

  4. T. Das, C. Mahata, C.K. Maiti, G.K. Dalapati, C.K. Chia, D.Z. Chi, S.Y. Chiam, H.L. Seng, C.C. Tan, H.K. Hui, G. Sutradhar, P.K. Bose, J. Electrochem. Soc. 159, G15 (2012)

    Article  CAS  Google Scholar 

  5. H.J. Oh, J.Q. Lin, S.J. Lee, G.K. Dalapati, A. Sridhara, D.Z. Chi, S.J. Chua, G.Q. Lo, D.L. Kwong, Appl. Phys. Lett. 93, 21 (2008)

    Google Scholar 

  6. C. Mahata, Y. Byun, C.-H. An, S. Choi, Y. An, H. Kim, A.C.S. Appl, Mater. Interfaces 5, 4195 (2013)

    Article  CAS  Google Scholar 

  7. S. Takagi, S.H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, Solid. State. Electron. 88, 2 (2013)

    Article  CAS  Google Scholar 

  8. M. Yokoyama, S. Kim, R. Zhang, N. Taoka, Y. Urabe, T. Maeda, H. Takagi, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, S. Takagi, Appl. Phys. Express 5, 14 (2012)

    Google Scholar 

  9. G.K. Dalapati, S. Guhathakurata, A. Das, C. Mahata, S. Chakraborty, S. Bhunia, H.L. Seng, S. Chattopadhyay, L.K. Bera, S. Tripathy, J. Alloys Compd. 765, 994–1002 (2018)

    Article  CAS  Google Scholar 

  10. G.K. Dalapati, M.K. Kumar, C.K. Chia, H. Gao, B.Z. Wang, A.S.W. Wong, A. Kumar, S.Y. Chiam, J.S. Pan, D.Z. Chi, J. Electrochem. Soc. 157, H825 (2010)

    Article  CAS  Google Scholar 

  11. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P.W. Leu, K. Ganapathi, E. Plis, H.S. Kim, S.-Y. Chen, M. Madsen, A.C. Ford, Y.-L. Chueh, S. Krishna, S. Salahuddin, A. Javey, Nature 468, 286 (2010)

    Article  CAS  Google Scholar 

  12. G.K. Dalapati, T.K. Shun Wong, Y. Li, C.K. Chia, A. Das, C. Mahata, H. Gao, S. Chattopadhyay, M.K. Kumar, H.L. Seng, C.K. Maiti, D.Z. Chi, Nanoscale Res. Lett 7, 99 (2012)

    Article  Google Scholar 

  13. G.K. Dalapati, C.K. Chia, C. Mahata, S. Krishnamoorthy, C.C. Tan, H.R. Tan, C.K. Maiti, D. Chi, IEEE Trans. Electron Devices 60, 192 (2013)

    Article  Google Scholar 

  14. G. Kumar Dalapati, S. Chakraborty, C. Mahata, M. Amin Bhuiyan, J. Dong, A. Iskander, S. Masudy-panah, S. Dinda, R. Bin Yang, T. Lee, D. Chi, C. Kean Chia, Mater. Lett. 156, 105 (2015)

    Article  CAS  Google Scholar 

  15. Z.-Z. Hou, G.-L. Wang, J.-J. Xiang, J.-X. Yao, Z.-H. Wu, Q.-Z. Zhang, H.-X. Yin, Chinese Phys. Lett. 34, 097304 (2017)

    Article  Google Scholar 

  16. X. Lan, X. Ou, Y. Cao, S. Tang, C. Gong, B. Xu, Y. Xia, J. Yin, A. Li, F. Yan, Z. Liu, J. Appl. Phys. 114, 044104 (2013)

    Article  Google Scholar 

  17. K.-H. Lee, H.-C. Lin, T.-Y. Huang, Jpn. J. Appl. Phys. 53, 014001 (2014)

    Article  Google Scholar 

  18. Y. Shen, Z. Zhang, Q. Zhang, F. Wei, H. Yin, Q. Wei, K. Men, RSC Adv. 10, 7812 (2020)

    Article  CAS  Google Scholar 

  19. Y. Zhang, Y.Y. Shao, X.B. Lu, M. Zeng, Z. Zhang, X.S. Gao, X.J. Zhang, J.-M. Liu, J.Y. Dai, Appl. Phys. Lett. 105, 172902 (2014)

    Article  Google Scholar 

  20. X. Lan, X. Ou, Y. Lei, C. Gong, Q. Yin, B. Xu, Y. Xia, J. Yin, Z. Liu, Appl. Phys. Lett. 103, 192905 (2013)

    Article  Google Scholar 

  21. M.M. Rahman, D.-H. Kim, T.-W. Kim, Nanomaterials 10, 527 (2020)

    Article  CAS  Google Scholar 

  22. J. Oh, H. Na, K. Lee, H. Sohn, M.Y. Heo, J. Vac. Sci. Technol. B. Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 31, 041201 (2013)

    Google Scholar 

  23. C.Y. Wei, B. Shen, P. Ding, P. Han, A.D. Li, Y.D. Xia, B. Xu, J. Yin, Z.G. Liu, Sci. Rep. 7, 5988 (2017)

    Article  CAS  Google Scholar 

  24. Z. Hou, Z. Wu, H. Yin, ECS J. Solid State Sci. Technol. 7, Q229 (2018)

    Article  CAS  Google Scholar 

  25. M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R.J. Luyken, W. Rösner, M. Grieb, L. Risch, Solid. State. Electron. 49, 716 (2005)

    Article  CAS  Google Scholar 

  26. C. Zhu, Z. Huo, Z. Xu, M. Zhang, Q. Wang, J. Liu, S. Long, M. Liu, Appl. Phys. Lett. 97, 253503 (2010)

    Article  Google Scholar 

  27. S. Nakata, T. Kato, S. Ozaki, T. Kawae, A. Morimoto, Thin Solid Films 542, 242 (2013)

    Article  CAS  Google Scholar 

  28. R.C. Jeff, M. Yun, B. Ramalingam, B. Lee, V. Misra, G. Triplett, S. Gangopadhyay, Appl. Phys. Lett. 99, 072104 (2011)

    Article  Google Scholar 

  29. E. Capogreco, A. Subirats, J.G. Lisoni, A. Arreghini, B. Kunert, W. Guo, C.L. Tan, R. Delhougne, G. Van Den Bosch, K. De Meyer, A. Furnemont, J. Van Houdt, IEEE Trans. Electron Devices 64, 130 (2017)

    Article  CAS  Google Scholar 

  30. X.-D. Huang, Y. Li, H.-Y. Li, K.-H. Xue, X. Wang, X.-S. Miao, IEEE Electron Device Lett. 41, 549 (2020)

    Article  CAS  Google Scholar 

  31. L. Khomenkova, B.S. Sahu, A. Slaoui, F. Gourbilleau, Nanoscale Res. Lett. 6, 172 (2011)

    Article  Google Scholar 

  32. E.K. Evangelou, M.S. Rahman, A. Dimoulas, IEEE Trans. Electron Devices 56, 399 (2009)

    Article  CAS  Google Scholar 

  33. W. Xu, Y. Zhang, Z. Tang, Z. Shao, G. Zhou, M. Qin, M. Zeng, S. Wu, Z. Zhang, J. Gao, X. Lu, J. Liu, Nanoscale Res. Lett. 12, 11 (2017)

    Article  Google Scholar 

  34. R. Khosla, E.G. Rolseth, P. Kumar, S.S. Vadakupudhupalayam, S.K. Sharma, J. Schulze, IEEE Trans. Device Mater. Reliab. 17, 80 (2017)

    Article  CAS  Google Scholar 

  35. E. Schilirò, R. Lo Nigro, P. Fiorenza, F. Roccaforte, AIP Adv. 6, 075021 (2016)

    Article  Google Scholar 

  36. K. Henkel, M. Kot, D. Schmeier, J. Vac. Sci. Technol. A Vacuum, Surf. Film 35, 01B125 (2017)

    Article  Google Scholar 

  37. M.B. González, J.M. Rafí, O. Beldarrain, M. Zabala, F. Campabadal, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom 31, 01A101 (2013)

    Google Scholar 

  38. D. Joubert, Phys. Rev. B. Condens. Matter Mater. Phys. 59, 1758 (1999)

    Article  Google Scholar 

  39. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  41. K. Iyakutti, E. Mathan Kumar, R. Thapa, R. Rajeswarapalanichamy, V.J. Surya, Y. Kawazoe, J. Mater. Sci. Mater. Electron. 27, 12669 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chandreswar Mahata or Goutam Kumar Dalapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, C., Ghosh, S., Chakraborty, S. et al. Charge trapping characteristics of sputter-AlOx/ALD Al2O3/Epitaxial-GaAs-based non-volatile memory. J Mater Sci: Mater Electron 32, 4157–4165 (2021). https://doi.org/10.1007/s10854-020-05157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05157-x

Navigation