Skip to main content
Log in

Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline M-type barium hexaferrite (BaFe12−xAlxO19) with x = 0.0, 1.0, 2.0, and 3.0 have been prepared by the sol–gel Method. The crystal structure of all the samples is found to be in hexagonal symmetry with P63/mmc space group. The impedance was studied over a range of frequencies (1 Hz–1 MHz) for all the compositions. Direct current (DC) electrical resistivity measurements of all the samples were carried out in the temperature range of 303–775 K. All the samples exhibit the semiconducting behavior. The resistivity increases with the increase in Al3+ substitution. The impedance along with DC resistivity results established the electron hopping conduction mechanism in the Al3+ substituted barium hexaferrites. The electrical conductivity has been well explained by the Mott variable-range hopping mechanism of localized polarons. The dielectric dipoles are frozen at low temperature and activated at high temperature as observed two transition temperatures in temperature versus impedance plot. A correlation between ac impedance and DC resistivity has been established in the M-type hexaferrite magnetic semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.D. Johnson, C.M. Gonzalez, V. Anderson, Z. Robinson, H.S. Newman, S. Shin, S.B. Qadri, J. Appl. Phys. 122, 024901 (2017)

    Google Scholar 

  2. R. Joshi, C. Singh, J. Singh, D. Kaur, S.B. Narang, R.B. Jotania, J. Mater. Sci.: Mater. Electron. 28, 11969 (2017)

    CAS  Google Scholar 

  3. A.V. Trukhanova, S.V. Trukhanova, V.G. Kostishina, L.V. Paninaa, M.M. Salema, I.S. Kazakevichb, V.A. Turchenkoc, V.V. Kochervinskiie, D.A. Krivchenyab, Phys. Solid State 59, 737 (2017)

    Google Scholar 

  4. A. Saini, A. Thakur, P. Thakur, J. Electron. Mater. 46, 1902 (2017)

    CAS  Google Scholar 

  5. S.E. Rowley, Y. Chai, S.P. Shen, Y. Sun, A.T. Jones, J.F. Scott, B.E. Watts, Sci. Rep. 6, 25724 (2016)

    CAS  Google Scholar 

  6. M.A. Rafiq, A. Farooq, M. Waqar, A. Zulfiqar, T.A. Mirza, J. Electron. Mater. 46, 1 (2017)

    Google Scholar 

  7. H. Jia, W. Liu, Z. Zhang, F. Chen, Y. Li, J. Liu, Y. Nie, Ceram. Int. 43, 5974 (2017)

    CAS  Google Scholar 

  8. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, O. Acher, C. Vittoria, A. Yang, M. Abe, J. Magn. Magn. Mater. 321, 2035 (2009)

    CAS  Google Scholar 

  9. P. Gelin, P. Quéffélec, IEEE Trans. Magn. 44, 1 (2008)

    Google Scholar 

  10. S.K. Mahadevan, C. Pahwa, S.B. Narang, P. Sharma, J. Magn. Magn. Mater. 441, 465 (2017)

    CAS  Google Scholar 

  11. J.L. Snoek, Physica 14, 4 (1948)

    Google Scholar 

  12. K. Praveena, K. Sadhana, S. Matteppanavar, H.L. Liu, J. Magn. Magn. Mater. 423, 343 (2017)

    CAS  Google Scholar 

  13. L. Peng, L. Li, J. Mater. Sci.: Mater. Electron (2017). https://doi.org/10.1007/s10854-017-7722-8

    Article  Google Scholar 

  14. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    CAS  Google Scholar 

  15. A. Shima, S. Sanghi, A. Reetu, J. Alloys Compd. 513, 436 (2012)

    Google Scholar 

  16. V.V. Soman, V.M. Nanoti, D.K. Kulkarni, Ceram. Int. 39, 5713 (2013)

    CAS  Google Scholar 

  17. M.T. Aljarrah, M.H. Saleh, M.A. Harahsheh, Phys. B (2017). https://doi.org/10.1016/j.physb.2017.08.023

    Article  Google Scholar 

  18. I.A. Auwal Unal, A. Baykal, U. Kurtan, M.D. Amir, M. Sertkol, A. Yildiz, J. Supercond. Nov. Magn. 30, 1813 (2017)

    Google Scholar 

  19. A.I. Ghoneim, M.A. Amer, T.M. Meaz, S.S. Attala, Phys. B 507, 1 (2017)

    CAS  Google Scholar 

  20. S. Kumar, S. Supriya, M. Kar, Mater. Today: Proc. 4, 5517 (2017)

    Google Scholar 

  21. M.N. Ashiq, R.B. Qureshi, M.A. Malana, M.F. Ehsan, J. Alloys Compd. 617, 437 (2014)

    CAS  Google Scholar 

  22. A. Zafar, A. Rehman, S. Shahzada, S. Anwar, M. Khan, A. Nisar, M. Ahmad, S. Karim, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.08.180

    Article  Google Scholar 

  23. P. Behera, S. Ravi, J. Supercond. Nov. Magn. 30, 1453–1461 (2017)

    CAS  Google Scholar 

  24. Y. Bakis, I.A. Auwal, B. Ünal, A. Baykal, Composites B 99, 248 (2016)

    CAS  Google Scholar 

  25. W.S. Castro, R.R. Corrêa, P.I.P. Filho, J.M.R. Mercury, A.A. Cabral, Ceram. Int. 41, 241 (2015)

    CAS  Google Scholar 

  26. S.M. Sayed, T.M. Meaz, M.A. Amer, H.A. Shersaby, Phys. B 426, 137 (2013)

    Google Scholar 

  27. I.A. Auwal, H. Erdemi, H. Sözeri, H. Güngünes, A. Baykal, J. Magn. Magn. Mater. 412, 69 (2016)

    CAS  Google Scholar 

  28. K. Pubby, S.B. Narang, S.K. Chawla, R.K. Mudsainiyan, J. Mater. Sci: Mater. Electron. 27, 11220 (2016)

    CAS  Google Scholar 

  29. A. Arora, S.B. Narang, J. Mater. Sci: Mater. Electron. 27, 10157 (2016)

    CAS  Google Scholar 

  30. P. Brahma, S. Banerjee, S. Chakraborty, D. Chakravorty, J. Appl. Phys. 88, 6526 (2000)

    CAS  Google Scholar 

  31. G. Kumar, S. Sharma, R.K. Kotnala, J. Shah, S.E. Shirsath, K.M. Batoo, M. Singh, J. Mol. Struct. 1051, 336 (2013)

    CAS  Google Scholar 

  32. V.P. Singh, G. Kumar, P. Dhiman, R.K. Kotnala, J. Shah, K.M. Batoo, M. Singh, Adv. Mat. Lett. 5, 447 (2014)

    CAS  Google Scholar 

  33. G. Kumar, R. Rani, V. Singh, S. Sharma, K.M. Batoo, M. Singh, Adv. Mater. Lett. 4, 682 (2013)

    Google Scholar 

  34. A. Brataas, A.D. Kent, H. Ohno, Nat. Mater. 11, 372 (2012)

    CAS  Google Scholar 

  35. S. Kumar, S. Supriya, L.K. Pradhan, M. Kar, J Mater Sci: Mater Electron. (2017). https://doi.org/10.1007/s10854-017-7580-4

    Article  Google Scholar 

  36. P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, J. Appl. Phys. 117, 194103 (2015)

    Google Scholar 

  37. J. Krishna murthy, C. Mitra, S. Ram, A. Venimadhav, J. Alloys Compd. 545, 225 (2012)

    CAS  Google Scholar 

  38. K. Kumar, D. Pandey, Phys. Rev. B 96, 024102 (2017)

    Google Scholar 

  39. S. Kumar, S. Supriya, M. Kar, J. Appl. Phys. 122, 224106 (2017)

    Google Scholar 

  40. L. Kumar, P. Kumar, A. Narayan, M. Kar, Int. Nano Lett. 3, 1 (2013)

    Google Scholar 

  41. P. Kumar, A. Gaur, R.K. Kotnala, Ceram. Int. 43, 1180 (2017)

    CAS  Google Scholar 

  42. R.M. Almeida, W. Paraguassu, D.S. Pires, R.R. Corrêa, C.W. Paschoal, Ceram. Int. 35, 2443 (2009)

    CAS  Google Scholar 

  43. S. Supriya, S. Kumar, M. Kar, J. Mater. Sci.: Mater. Electron. 28, 10652 (2017)

    CAS  Google Scholar 

  44. S. Supriya, S. Kumar, M. Kar, J. Appl. Phys. 120, 215106 (2016)

    Google Scholar 

  45. V.M. Ishchuk, L.G. Gusakova, N.G. Kisel, N.A. Spiridonov, V.L. Sobolev, J. Am. Ceram. Soc. 99, 1786 (2016)

    CAS  Google Scholar 

  46. X. Liu, H. Fan, J. Shi, Q. Li, Sci. Rep. 5, 12699 (2015)

    CAS  Google Scholar 

  47. M. Pal, P. Brahma, B.R. Chakraborty, D. Chakravorty, Jpn. J. Appl. Phys. 36, 2163 (1997)

    CAS  Google Scholar 

  48. H. Sözeri, H. Deligöz, H. Kavas, A. Baykal, Ceram. Int. 40, 8645 (2014)

    Google Scholar 

  49. I.G. Austin, N.F. Mott, Adv. Phys. 50, 757 (2001)

    Google Scholar 

  50. S. Ravi, M. Kar, Phys. B 348, 169 (2004)

    CAS  Google Scholar 

  51. G. Datt, A.C. Abhyankar, J. Appl. Phys. 122, 034102 (2017)

    Google Scholar 

  52. C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui, G. Li, D. Zhanga, Inorg. Chem. Front. 5, 3126 (2018)

    CAS  Google Scholar 

  53. C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Appl. Surf. Sci. 453, 288 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Ranjan, K.M. & Kumar, S. Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor. J Mater Sci: Mater Electron 32, 4110–4124 (2021). https://doi.org/10.1007/s10854-020-05152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05152-2

Navigation