Skip to main content
Log in

RETRACTED ARTICLE: TiO2/Cu-MOF/PPy composite as a novel photocatalyst for decomposition of organic dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 25 March 2023

This article has been updated

Abstract

Herein, we report the novel metal organic frameworks (MOFs)-based polypyrrole (TiO2/Cu-MOF/PPy) composite via facile hydrothermal technique. The prepared composites are characterized by X-ray diffractometer; microstructural characterization is done with field emission scanning electron microscopy (FESEM); and Fourier-transform infrared spectroscopy, X-ray photo-electron spectroscopy, UV–Vis absorbance spectra, and UV–Vis diffuse reflectance spectra analysis are obtained. The catalytic behavior is examined through the decomposition of methylene blue, rhodamine B, and methyl orange, as a standard dyes under visible light irradiation. Enhanced photocatalytic activities for the novel TiO2/Cu-MOF/PPy composite under visible light are attributed to the high charge separation, absorption, and carrier mobility of MOFs-based polypyrrole composite. Our result shows a great potential of MOFs-based polymer materials as catalyst under visible light radiation for the decomposition of industrial organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. C. Xu et al., Nanostructured materials for photocatalysis. Chem. Soc. Rev. 48(14), 3868–3902 (2019)

    Article  CAS  Google Scholar 

  2. T. Kanazawa, K. Maeda, Photochemical synthesis of nanoscale multicomponent metal species and their application to photocatalytic and electrochemical water splitting, in Nanostructured photocatalysts. ed. by R.B. Satishchandra, B. Ogale, N. Robertson (Elsevier, New York, 2020), pp. 19–38

    Chapter  Google Scholar 

  3. X. Zhang et al., Metal–organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2(1), 29–104 (2019)

    Article  CAS  Google Scholar 

  4. B. Hampel et al., Application of TiO2–Cu composites in photocatalytic degradation different pollutants and hydrogen production. Catalysts 10(1), 85 (2020)

    Article  CAS  Google Scholar 

  5. M. Valero-Romero et al., Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chem. Eng. J. 360, 75–88 (2019)

    Article  CAS  Google Scholar 

  6. L.E. Pérez-Jiménez et al., Enhancement of optoelectronic properties of TiO2 films containing Pt nanoparticles. Results Phys. 12, 1680–1685 (2019)

    Article  Google Scholar 

  7. A. Omar et al., Chemical, optical and photovoltaic properties of TiO2/reduced graphene oxide photoanodes sensitized with Roselle and N719 dyes for dye-sensitized solar cell application. Pigm. Resin Technol. 49(4), 315–324 (2020)

    Article  CAS  Google Scholar 

  8. M.K. Arfanis et al., Photocatalytic properties of copper: modified core-shell titania nanocomposites. J. Photochem. Photobiol. A 370, 145–155 (2019)

    Article  CAS  Google Scholar 

  9. E. Akbarzadeh, H.Z. Soheili, M. Hosseinifard, M.R. Gholami, Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants. Mater. Res. Bull. 121, 110621 (2020)

    Article  CAS  Google Scholar 

  10. H. Karimi-Maleh et al., The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    Article  CAS  Google Scholar 

  11. Z.-G. Sun et al., A promising visible-light photocatalyst: H2 plasma-activated amorphous-TiO2-supported Au nanoparticles. J. Catal. 375, 380–388 (2019)

    Article  CAS  Google Scholar 

  12. R. Fatima et al., Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J. Clean. Prod. 231, 899–912 (2019)

    Article  CAS  Google Scholar 

  13. B. Moazzenchi, M. Montazer, Click electroless plating of nickel nanoparticles on polyester fabric: electrical conductivity, magnetic and EMI shielding properties. Colloids Surf. A 571, 110–124 (2019)

    Article  CAS  Google Scholar 

  14. Y. Wang et al., Conductive polymers for stretchable supercapacitors. Nano Res. 12, 1978–1987 (2019)

    Article  CAS  Google Scholar 

  15. O.A.T. Dias et al., Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization. Carbohyd. Polym. 220, 79–85 (2019)

    Article  CAS  Google Scholar 

  16. A.-U.-H.A. Shah et al., Cost effective chemical oxidative synthesis of soluble and electroactive polyaniline salt and its application as anticorrosive agent for steel. Materials 12(9), 1527 (2019)

    Article  CAS  Google Scholar 

  17. S. Chatterjee, C.-L. Hui, Review of stimuli-responsive polymers in drug delivery and textile application. Molecules 24(14), 2547 (2019)

    Article  CAS  Google Scholar 

  18. L.Y. Molefe et al., Synthesis of porous polymer-based metal–organic frameworks monolithic hybrid composite for hydrogen storage application. J. Mater. Sci. 54(9), 7078–7086 (2019)

    Article  CAS  Google Scholar 

  19. F.G. Zamani et al., Current trends in the development of conducting polymers-based biosensors. Trends Anal. Chem. 118, 264–276 (2019)

    Article  Google Scholar 

  20. J.-Q. Liu et al., Recent developments in luminescent coordination polymers: designing strategies, sensing application and theoretical evidences. Coord. Chem. Rev. 406, 213145 (2020)

    Article  CAS  Google Scholar 

  21. J. Li, J. Qiao, K. Lian, Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: a review. Energy Storage Mater. 24, 6–21 (2020)

    Article  CAS  Google Scholar 

  22. M. Yuan, S.D. Minteer, Redox polymers in electrochemical systems: from methods of mediation to energy storage. Curr. Opin. Electrochem. 15, 1–6 (2019)

    Article  Google Scholar 

  23. R. Luo et al., A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends. Org. Electron. 76, 105451 (2020)

    Article  CAS  Google Scholar 

  24. X. Fu et al., Flexible conducting polymer-based cellulose substrates for on-skin applications. Mater. Sci. Eng. C 108, 110392 (2020)

    Article  CAS  Google Scholar 

  25. J. Chen et al., Polypyrrole-doped conductive supramolecular elastomer with stretchability, rapid self-healing, and adhesive property for flexible electronic sensors. ACS Appl. Mater. Interfaces 11(20), 18720–18729 (2019)

    Article  CAS  Google Scholar 

  26. A.F. Cruz-Pacheco et al., Assessing the influence of the sourcing voltage on polyaniline composites for stress sensing applications. Polymers 12(5), 1164 (2020)

    Article  CAS  Google Scholar 

  27. S. Morsi et al., Polypyrrole-coated latex particles as core/shell composites for antistatic coatings and energy storage applications. J. Coat. Technol. Res. 16(3), 745–759 (2019)

    Article  CAS  Google Scholar 

  28. Folorunso, O., et al., Investigation of graphene loaded polypyrrole for lithium-ion battery. Materials Today: Proceedings, 2020.

  29. W. Yang et al., Applications of metal–organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019)

    Google Scholar 

  30. J. Zhang et al., Hollow multi-shelled structure with metal–organic-framework-derived coatings for enhanced lithium storage. Angew. Chem. Int. Ed. 58(16), 5266–5271 (2019)

    Article  CAS  Google Scholar 

  31. S. Wang et al., Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride. J. Mater. Chem. C 8(2), 528–535 (2020)

    Article  Google Scholar 

  32. S. Silvestri et al., Polypyrrole-TiO2 composite for removal of 4-chlorophenol and diclofenac. React. Funct. Polym. 146, 104401 (2020)

    Article  CAS  Google Scholar 

  33. S. Silvestri et al., Synthesis of PPy-ZnO composite used as photocatalyst for the degradation of diclofenac under simulated solar irradiation. J. Photochem. Photobiol. A 375, 261–269 (2019)

    Article  CAS  Google Scholar 

  34. T. Anirudhan, J. Christa, F. Shainy, Magnetic titanium dioxide embedded molecularly imprinted polymer nanocomposite for the degradation of diuron under visible light. React. Funct. Polym. 152, 104597 (2020)

    Article  CAS  Google Scholar 

  35. M. Yu et al., Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal. Chim. Acta 1080, 84–94 (2019)

    Article  CAS  Google Scholar 

  36. M. Maruthapandi et al., Carbon-dot initiated synthesis of polypyrrole and polypyrrole@ CuO micro/nanoparticles with enhanced antibacterial activity. ACS Appl. Polym. Mater. 1(5), 1181–1186 (2019)

    Article  CAS  Google Scholar 

  37. K. Malook, M. Khan, M. Ali, Polypyrrole-CuO based composites, promotional effects of CuO contents on polypyrrole characteristics. J. Mater. Sci. 30(4), 3882–3888 (2019)

    CAS  Google Scholar 

  38. P. Wang et al., A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions. Electrochim. Acta 306, 35–44 (2019)

    Article  CAS  Google Scholar 

  39. Y. Zhou et al., Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode. J. Solid State Electrochem. 23(6), 1829–1836 (2019)

    Article  CAS  Google Scholar 

  40. C. Cui et al., Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J. Phys. Chem. B 116(31), 9523–9531 (2012)

    Article  CAS  Google Scholar 

  41. A. Beniwal, Novel TPU/Fe2O3 and TPU/Fe2O3/PPy nanocomposites synthesized using electrospun nanofibers investigated for analyte sensing applications at room temperature. Sens. Actuators B 304, 127384 (2020)

    Article  CAS  Google Scholar 

  42. K. Han et al., Tremella-like NiO microspheres embedded with fish-scale-like polypyrrole for high-performance asymmetric supercapacitor. RSC Adv. 9(38), 21608–21615 (2019)

    Article  CAS  Google Scholar 

  43. L. Zhang et al., Preparation of stainless steel mesh-supported MnO2/polypyrrole nanocomposites as binder-free electrode for supercapacitor. NANO 15(03), 2050031 (2020)

    Article  CAS  Google Scholar 

  44. V. Archana et al., Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. ACS Sustain. Chem. Eng. 7(7), 6707–6719 (2019)

    Article  CAS  Google Scholar 

  45. A. Jamwal et al., Towards sustainable copper matrix composites: manufacturing routes with structural, mechanical, electrical and corrosion behaviour. J. Compos. Mater. 54(19), 2635–2649 (2020)

    Article  CAS  Google Scholar 

  46. D. Ding, G. Ye, L. Chen, Superior corrosion resistance KAlSi2O6-containing materials for calcining Li-ion battery cathode materials. Corros. Sci. 157, 324–330 (2019)

    Article  CAS  Google Scholar 

  47. N. Jadhav, S. Kasisomayajula, V. Gelling, Polypyrrole/metal oxides-based composites/nanocomposites for corrosion protection. Front. Mater. 7, 95 (2020)

    Article  Google Scholar 

  48. S. Rostamnia, H. Alamgholiloo, X. Liu, Pd-grafted open metal site copper-benzene-1, 4-dicarboxylate metal organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable Suzuki coupling. J. Colloid Interface Sci. 469, 310–317 (2016)

    Article  CAS  Google Scholar 

  49. Y. Zhang et al., Theoretical study of D-A′–π–A/D–π–A′–π–A triphenylamine and quinoline derivatives as sensitizers for dye-sensitized solar cells. RSC Adv 10(29), 17255–17265 (2020)

    Article  CAS  Google Scholar 

  50. K. Ullah et al., Enhanced visible light photocatalytic activity and hydrogen evolution through novel heterostructure AgI–FG–TiO2 nanocomposites. J. Mol. Catal. A 410, 242–252 (2015)

    Article  CAS  Google Scholar 

  51. S.A.M. Rizvi et al., Synthesis and characterization of Cu-MOF derived Cu@ AC electrocatalyst for oxygen reduction reaction in PEMFC. Catal. Lett. 150, 1397–1407 (2020)

    Article  CAS  Google Scholar 

  52. R. Rani et al., Enhanced hydrothermal stability of Cu MOF by post synthetic modification with amino acids. Vacuum 164, 449–457 (2019)

    Article  CAS  Google Scholar 

  53. S.S. Nadar, V.K. Rathod, Immobilization of proline activated lipase within metal organic framework (MOF). Int. J. Biol. Macromol. 152, 1108–1112 (2020)

    Article  Google Scholar 

  54. H. Yu et al., Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability. J. Neurophysiol. 117(1), 230–242 (2017)

    Article  Google Scholar 

  55. C. Guo et al., FTIR-ATR study for adsorption of trypsin in aqueous environment on bare and TiO2 coated ZnSe surfaces. Chin. Chem. Lett. 31(1), 150–154 (2020)

    Article  CAS  Google Scholar 

  56. N.D. Abazović et al., Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B 110(50), 25366–25370 (2006)

    Article  Google Scholar 

  57. S. Mugundan et al., Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 5(4), 449–456 (2015)

    Article  CAS  Google Scholar 

  58. J. Li et al., Kinetics and mechanisms of electrocatalytic hydrodechlorination of diclofenac on Pd-Ni/PPy-rGO/Ni electrodes. Appl. Catal. B 268, 118696 (2020)

    Article  CAS  Google Scholar 

  59. X. Liang et al., A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J. Power Sources 196(16), 6951–6955 (2011)

    Article  CAS  Google Scholar 

  60. Z. Zhang et al., Encapsulation of CsPbBr 3 perovskite quantum dots into PPy conducting polymer: exceptional water stability and enhanced charge transport property. Appl. Surf. Sci. 526, 146735 (2020)

    Article  CAS  Google Scholar 

  61. Y. Zhang et al., Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem. Commun. 49(61), 6885–6887 (2013)

    Article  CAS  Google Scholar 

  62. Y.-Y. Chen et al., Two chiral cadmium carboxylate framework isomers generated by spontaneous resolution: synthesis, structures and properties. J. Coord. Chem. 72(2), 251–261 (2019)

    Article  CAS  Google Scholar 

  63. S. Wang et al., Synergistic effects between Cu metal–organic framework (Cu-MOF) and carbon nanomaterials for the catalyzation of the thermal decomposition of ammonium perchlorate (AP). J. Mater. Sci. 54(6), 4928–4941 (2019)

    Article  CAS  Google Scholar 

  64. B. Wang et al., Incorporating Ni-MOF structure with polypyrrole: enhanced capacitive behavior as electrode material for supercapacitor. RSC Adv. 10(21), 12129–12134 (2020)

    Article  CAS  Google Scholar 

  65. H. She et al., Enhanced performance of photocatalytic CO2 reduction via synergistic effect between chitosan and Cu:TiO2. Mater. Res. Bull. 124, 110758 (2020)

    Article  CAS  Google Scholar 

  66. T. Larsson, B. Noläng, Y. Andersson, The electronic structure of the hydrogen solid solution in Ti3P. J. Alloy. Compd. 231(1–2), 153–158 (1995)

    Article  CAS  Google Scholar 

  67. J. Zhao et al., Facile preparation of a self-assembled artemia cyst shell–TiO2–MoS2 porous composite structure with highly efficient catalytic reduction of nitro compounds for wastewater treatment. Nanotechnology 31(8), 085603 (2019)

    Article  Google Scholar 

  68. P. Arul et al., Ultrasonic assisted synthesis of size-controlled Cu-metal–organic framework decorated graphene oxide composite: sustainable electrocatalyst for the trace-level determination of nitrite in environmental water samples. ACS Omega 5(24), 14242–14253 (2020)

    Article  CAS  Google Scholar 

  69. P. Samanta et al., Advanced porous materials for sensing, capture and detoxification of organic pollutants toward water remediation. ACS Sustain. Chem. Eng. 7(8), 7456–7478 (2019)

    Article  CAS  Google Scholar 

  70. L. Liu et al., The applications of metal−organic frameworks in electrochemical sensors. ChemElectroChem 5(1), 6–19 (2018)

    Article  Google Scholar 

  71. I.I. Alkhatib et al., Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: a review of strategies and applications. Catal. Today 340, 209–224 (2020)

    Article  CAS  Google Scholar 

  72. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15(2), 627–637 (1966)

    Article  CAS  Google Scholar 

  73. N. Alam et al., Fabrication and enhancement in photoconductive response of α-Fe2O3/graphene nanocomposites as anode material. J. Mater. Sci. 29(20), 17786–17794 (2018)

    CAS  Google Scholar 

  74. D. Han et al., Enhanced photocatalytic activity and photothermal effects of Cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B 261, 118248 (2020)

    Article  CAS  Google Scholar 

  75. E. Akbarzadeh et al., Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants. Mater. Res. Bull. 121, 110621 (2020)

    Article  CAS  Google Scholar 

  76. L.Á.A. Herrera, P.K.C. Reyes, A.M. Huerta Flores, L.T. Martínez, J.M.R. Villanueva, BDC-Zn MOF sensitization by MO/MB adsorption for photocatalytic hydrogen evolution under solar light. Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.104950

    Article  Google Scholar 

  77. V. Kumara, K. Porkodib, F. Rochaa, Langmuir-Hinshelwood kinetics: a theoretical study. Catal. Commun. 9(1), 82–84 (2008)

    Article  Google Scholar 

  78. K. Ullah et al., Synergistic effect of PtSe2 and graphene sheets supported by TiO2 as cocatalysts synthesized via microwave techniques for improved photocatalytic activity. Catal. Sci. Technol. 5(1), 184–198 (2015)

    Article  CAS  Google Scholar 

  79. K.Z. Ullah, Z.-D. Meng, S. Ye, S. Sarkar, W.-C. Oh, Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties. J. Mater. Sci. 49(12), 4139–4147 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Doctoral Research Initiation Fund Project of Jilin Engineering Normal University (BSKJ201914).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Kefayat Ullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s10854-023-10277-1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, Y., Xue, Q. et al. RETRACTED ARTICLE: TiO2/Cu-MOF/PPy composite as a novel photocatalyst for decomposition of organic dyes. J Mater Sci: Mater Electron 32, 4097–4109 (2021). https://doi.org/10.1007/s10854-020-05151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05151-3

Navigation