Skip to main content

Advertisement

Log in

Expert development of Hetero structured TiS2–TiO2 nanocomposites and evaluation of electron acceptors effect on the photo catalytic degradation of organic Pollutants under UV-light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, TiO2 co-doped TiS2 nanocomposite were synthesized by a simple co-precipitation method and used as a photocatalyst in the presence of H2O2 for the oxidation of Acid black 1 (AB1) dye under UV light. Highly effective TiO2 co-doped TiS2 was characterized with X-ray diffraction, high-transmission electron microscope images, high-resolution electron microscope images, Diffuse reflectance spectroscopy and photoluminescence spectra. The TiS2–TiO2 nanoparticles have high-specific surface area (101 m2 g−1) and optical bandgap energy of 2.02 eV. Under artificial light, only 58% of AB 1 (100 mL; 20 mg L−1) was photo catalytically degraded by TiS–TiO2 in 90 min reaction. However, after adding H2O2, the photocatalytic activity of TiS-TiO2 was significantly improved, reaching 86% of dye removal. Tests using scavengers of reactive species and Electron paramagnetic resonance spectroscopy (EPR) analysis revealed that h+ and OH are the main species in this system. Based on the experimental results, the mechanism of AB 1 photodegradation in the presence of TiS–TiO2 and H2O2 was proposed. By this mechanism, the OH can be formed by direct water oxidation or by H2O2 reduction, as the electron transfer from the conduction band of TiS–TiO2 to H2O2 is thermodynamically favorable. Moreover, the H2O2 retards the electron–hole recombination in TiS–TiO2, thus increasing its photocatalytic activity. Given its high efficiency for degrading AB 1 in water, TiS–TiO2 revealed to be a promising photocatalyst to be tested in the oxidation of emerging pollutants for the environmental decontamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C.W. Lai, J.C. Juan, W.B. Ko, S.B.A. Hamid, An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation. Int. J. Photoenergy 2014, 1–14 (2014). https://doi.org/10.1155/2014/524135

    Article  CAS  Google Scholar 

  2. H. Abdelouahab Reddam, R. Elmail, S.C. Lloria, G. Monrós Tomás, Z.A. Reddam, P.F. Coloma, Synthesis of Fe, Mn and Cu modified TiO2 photocatalysts for photodegradation of Orange II. Boletín de la Sociedad Española de Cerámica y Vidrio 59(4), 138–148 (2020). https://doi.org/10.1016/j.bsecv.2019.09.005

    Article  CAS  Google Scholar 

  3. Z. Sorinezami, H. Mansouri-Torshizi, Photo-catalytic degradation of organic dyes: ultrasonic-assisted synthesis of PdO nanoparticles. J. Mater. Sci.: Mater. Electron. 27(2), 1558–1565 (2015). https://doi.org/10.1007/s10854-015-3924-0

    Article  CAS  Google Scholar 

  4. M. Parvaz, Z.H. Khan, Optical properties of pure and PbSe doped TiS2 nanodiscs. Materials Research Express (2018). https://doi.org/10.1088/2053-1591/aaa5bb

    Article  Google Scholar 

  5. R. Janisch, P. Gopal, N.A. Spaldin, Transition metal-doped TiO2and ZnO—present status of the field. J. Phys.: Condens. Matter 17(27), R657–R689 (2005). https://doi.org/10.1088/0953-8984/17/27/r01

    Article  CAS  Google Scholar 

  6. Z. Ebrahimi, K. Hedayati, D. Ghanbari, Preparation of hard magnetic BaFe12O19–TiO2 nanocomposites: applicable for photo-degradation of toxic pollutants. J. Mater. Sci.: Mater. Electron. 28(18), 13956–13969 (2017). https://doi.org/10.1007/s10854-017-7245-3

    Article  CAS  Google Scholar 

  7. A.C. Da Silva, M.R. Almeida, M. Rodriguez, A.R.T. Machado, L.C.A. de Oliveira, M.C. Pereira, Improved photocatalytic activity of δ-FeOOH by using H2O2 as an electron acceptor. J. Photochem. Photobiol., A 332, 54–59 (2017). https://doi.org/10.1016/j.jphotochem.2016.08.013

    Article  CAS  Google Scholar 

  8. M.M. Lima, D.L.P. Macuvele, L. Muller, J. Nones, L.L. Silva, M.A. Fiori et al., Synthesis and Potential Adsorption of Fe3O4@C Core-Shell Nanoparticles for to Removal of Pollutants in Aqueous Solutions: A Brief Review. Journal of Advanced Chemical Engineering (2017). https://doi.org/10.4172/2090-4568.1000172

    Article  Google Scholar 

  9. C.M. DiCarlo, L.B. Vitello, J.E. Erman, Effect of active site and surface mutations on the reduction potential of yeast cytochrome c peroxidase and spectroscopic properties of the oxidized and reduced enzyme. J. Inorg. Biochem. 101(4), 603–613 (2007)

    Article  CAS  Google Scholar 

  10. Y. Nosaka, A.Y. Nosaka, Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 117(17), 11302–11336 (2017)

    Article  CAS  Google Scholar 

  11. M. Mrowetz, E. Selli, H2O2evolution during the photocatalytic degradation of organic molecules on fluorinated TiO2. New J Chem 30(1), 108–114 (2006). https://doi.org/10.1039/b511320b

    Article  CAS  Google Scholar 

  12. S. Meenakshisundaram, Environmental Photocatalysis/Photocatalytic Decontamination. Handbook of Ecomaterials (2017). https://doi.org/10.1007/978-3-319-48281-1_65-1

    Article  Google Scholar 

  13. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26, 98–100 (1918)

    Google Scholar 

  14. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978). https://doi.org/10.1107/s0021889878012844

    Article  CAS  Google Scholar 

  15. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater Charact. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  16. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2. Nano Lett 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w

    Article  CAS  Google Scholar 

  17. A.E. Mragui, Y. Logvina, L.P.D. Silva, O. Zegaoui, J.C.G.E.D. Silva, Synthesis of Fe- and Co-Doped TiO2 with Improved Photocatalytic Activity Under Visible Irradiation Toward Carbamazepine Degradation. Materials (2019). https://doi.org/10.3390/ma12233874

    Article  Google Scholar 

  18. A. Das, S.K. Gautam, D.K. Shukla, F. Singh, Correlations of charge neutrality level with electronic structure and p-d hybridization. Scientific Reports (2017). https://doi.org/10.1038/srep40843

    Article  Google Scholar 

  19. S. Belekbir, M. El Azzouzi, A. El Hamidi, L. Rodríguez-Lorenzo, J.A. Santaballa, M. Canle, Improved Photocatalyzed Degradation of Phenol, as a Model Pollutant, over Metal-Impregnated Nanosized TiO2. Nanomaterials 10(5), 996 (2020). https://doi.org/10.3390/nano10050996

    Article  CAS  Google Scholar 

  20. D.Y. Oh, Y.E. Choi, D.H. Kim, Y.-G. Lee, B.-S. Kim, J. Park et al., All-solid-state lithium-ion batteries with TiS2 nanosheets and sulphide solid electrolytes. Journal of Materials Chemistry A 4(26), 10329–10335 (2016). https://doi.org/10.1039/c6ta01628f

    Article  CAS  Google Scholar 

  21. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports Internet (2016). https://doi.org/10.1038/srep32355

    Article  Google Scholar 

  22. X.-G. Chen, C.M. Lee, H.-J. Park, O/W Emulsification for the Self-Aggregation and Nanoparticle Formation of Linoleic AcidModified Chitosan in the Aqueous System. Journal of Agricultural and Food Chemistry [Internet] 51(10), 3135–3139 (2003). https://doi.org/10.1021/jf0208482

    Article  CAS  Google Scholar 

  23. T. Tachikawa, M. Fujitsuka, T. Majima, Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts. The Journal of Physical Chemistry C 111(14), 5259–5275 (2007). https://doi.org/10.1021/jp069005u

    Article  CAS  Google Scholar 

  24. F.R. Pinto, L.A. Cowart, Y.A. Hannun, B. Rohrer, J.S. Almeida, Local correlation of expression profiles with gene annotations—proof of concept for a general conciliatory method. Bioinformatics 21(7), 1037–1045 (2004). https://doi.org/10.1093/bioinformatics/bti074

    Article  Google Scholar 

  25. K. Hashimoto, H. Irie, A. Fujishima, TiO2Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005). https://doi.org/10.1143/jjap.44.8269

    Article  CAS  Google Scholar 

  26. Y. Nosaka, A. Nosaka, Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Letters 1(2), 356–359 (2016). https://doi.org/10.1021/acsenergylett.6b00174

    Article  CAS  Google Scholar 

  27. K.M. Reza, A. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Applied Water Science 7(4), 1569–1578 (2015). https://doi.org/10.1007/s13201-015-0367-y

    Article  CAS  Google Scholar 

  28. R. Mohammadzadeh Kakhki, R. Tayebee, F. Ahsani, New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. J. Mater. Sci.: Mater. Electron. 28(8), 5941–5952 (2017). https://doi.org/10.1007/s10854-016-6268-5

    Article  CAS  Google Scholar 

  29. S. Hemmati Borji, S. Nasseri, A.H. Mahvi, R. Nabizadeh, A.H. Javadi, Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. Journal of Environmental Health Science and Engineering (2014). https://doi.org/10.1186/2052-336x-12-101

    Article  Google Scholar 

  30. Q. Zhang, C. Li, T. Li, Rapid Photocatalytic Degradation of Methylene Blue under High Photon Flux UV Irradiation: Characteristics and Comparison with Routine Low Photon Flux. Int. J. Photoenergy 2012, 1–7 (2012). https://doi.org/10.1155/2012/398787

    Article  CAS  Google Scholar 

  31. S.K. Kansal, N. Kaur, S. Singh, Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts. Nanoscale Res. Lett. 4(7), 709–716 (2009). https://doi.org/10.1007/s11671-009-9300-3

    Article  CAS  Google Scholar 

  32. C.A. Ferreira, D. Ni, Z.T. Rosenkrans, W. Cai, Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Research 11(10), 4955–4984 (2018). https://doi.org/10.1007/s12274-018-2092-y

    Article  CAS  Google Scholar 

  33. D.-H. Tseng, L.-C. Juang, H.-H. Huang, Effect of Oxygen and Hydrogen Peroxide on the Photocatalytic Degradation of Monochlorobenzene in Aqueous Suspension. Int. J. Photoenergy 2012, 1–9 (2012). https://doi.org/10.1155/2012/328526

    Article  CAS  Google Scholar 

  34. R.J. Buszek, M. Torrent-Sucarrat, J.M. Anglada, J.S. Francisco, Effects of a Single Water Molecule on the OH + H2O2 Reaction. The Journal of Physical Chemistry A 116(24), 5821–5829 (2012). https://doi.org/10.1021/jp2077825

    Article  CAS  Google Scholar 

  35. T. Schnabel, S. Mehling, J. Londong, C. Springer, Hydrogen peroxide-assisted photocatalytic water treatment for the removal of anthropogenic trace substances from the effluent of wastewater treatment plants. Water Sci. Technol. (2020). https://doi.org/10.2166/wst.2020.481

    Article  Google Scholar 

  36. H.H. Logita et al., Synthesis, characterization and photocatalytic activity of MnO2/Al2O3/Fe2O3 nanocomposite for degradation of malachite green. African Journal of Pure and Applied Chemistry 9(11), 211–222 (2015). https://doi.org/10.5897/AJPAC2015.0656

    Article  CAS  Google Scholar 

  37. M.J. Yoo, H.B. Park, Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 141, 515–522 (2019). https://doi.org/10.1016/j.carbon.2018.10.009

    Article  CAS  Google Scholar 

  38. Y. Li, L. Jia, C. Wu, S. Han, Y. Gong, B. Chi et al., Mesoporous (N, S)-codoped TiO2 nanoparticles as effective photoanode for dye-sensitized solar cells. J. Alloy. Compd. 512(1), 23–26 (2012). https://doi.org/10.1016/j.jallcom.2011.08.072

    Article  CAS  Google Scholar 

  39. G. Naresh, P.-L. Hsieh, V. Meena, S.-K. Lee, Y.-H. Chiu, M. Madasu et al., Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces. 11(3), 3582–3589 (2018). https://doi.org/10.1021/acsami.8b19197

    Article  CAS  Google Scholar 

  40. L. Yin, H. Zhang, J. Huang, X. Kong, H. Li, P. Bai et al., Enhanced visible-light photocatalytic activity of Ag/In2S3 photocatalysts induced by Schottky contact and SPR of Ag. J. Mater. Sci.: Mater. Electron. 31(3), 2089–2099 (2019). https://doi.org/10.1007/s10854-019-02730-x

    Article  CAS  Google Scholar 

  41. A. Annamalai, P.S. Shinde, A. Subramanian, J.Y. Kim, J.H. Kim, S.H. Choi et al., Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: enhanced interface and Ti4+ doping. J. Mater. Chem. 3(9), 5007–5013 (2015). https://doi.org/10.1039/c4ta06315e

    Article  CAS  Google Scholar 

  42. J. Lu, J. Bai, X. Xu, Z. Li, K. Cao, J. Cui et al., Alternate redox electrolytes in dye-sensitized solar cells. Chin. Sci. Bull. 57(32), 4131–4142 (2012). https://doi.org/10.1007/s11434-012-5409-3

    Article  CAS  Google Scholar 

  43. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manage. 92(3), 311–330 (2011). https://doi.org/10.1016/j.jenvman.2010.08.028

    Article  CAS  Google Scholar 

  44. V.J. Pereira, K.G. Linden, H.S. Weinberg, Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water. Water Res. 41(19), 4413–4423 (2007). https://doi.org/10.1016/j.watres.2007.05.056

    Article  CAS  Google Scholar 

  45. T.T.T. Le, T.D. Tran, Photocatalytic Degradation of Rhodamine B by C and N Codoped TiO2 Nanoparticles under Visible-Light Irradiation. Journal of Chemistry (2020). https://doi.org/10.1155/2020/4310513

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jacquline Rosy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosy, P.J., Jas, M.J.S., Santhanalakshmi, K. et al. Expert development of Hetero structured TiS2–TiO2 nanocomposites and evaluation of electron acceptors effect on the photo catalytic degradation of organic Pollutants under UV-light. J Mater Sci: Mater Electron 32, 4053–4066 (2021). https://doi.org/10.1007/s10854-020-05147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05147-z

Navigation