Skip to main content
Log in

Influence of Mg2+ replacement on the structure and magnetic properties of MgxZn1−xFe2O4 (x = 0.1–0.5) ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the Mg–Zn polycrystalline ferrites with the chemical formula MgxZn1−xFe2O4 (x = 0.1, 0.2, 0.3, 0.4, 0.5) were prepared by standard solid-phase reaction method at the optimal sintering temperature of 1573 K. The structure and magnetic properties of ferrites were characterized by advanced technologies such as XRD, SEM, EDX, FTIR, XPS, and SQUID-VSM. The XRD and FTIR spectra confirmed that all samples had a spinel structure, and the lattice constant and volume decreased gradually. The SEM, EDX, and XPS spectra were used to characterize the microstructure, ion concentration and element valence of the sample. For the obtained sample, as the amount of Mg2+ ions doping increases, the competition between antiferromagnetic (AFM) and ferromagnetic (FM) causes the transition temperature to increase from 19 to 383 K, making it have a broader application prospect. Under the proper doping amount, the saturation magnetization (MS) and coercivity (HC) of all samples were ameliorated at ultra-low temperature and normal temperature. Experimental results show, with the continuous doping of Mg2+ ions, the values of MS and HC continue to increase, the maximum value of Ms can reach 43.6 emu/g (at 300 K) and 96.8 emu/g (at 5 K), and the maximum value of Hc can reach 38.5 Oe (at 300 K) and 99.6 Oe (at 5 K) in the series, which has just reached the use requirements of inductors, transformers and other magnetic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.L. Zhao, Q. Lv, Z.M. Shen, Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J. Alloys Compd. 480(2), 634–638 (2009)

    Article  CAS  Google Scholar 

  2. P. Yang, Z.Q. Liu, H.B. Qi, High-performance inductive couplers based on novel Ce3+ and Co2+ ions co-doped Ni–Zn ferrites. Ceram. Int. 45(11), 13685–13691 (2019)

    Article  CAS  Google Scholar 

  3. F. Li, J. Liu, D.G. Evans, X. Duan, Stoichometric synthesis of pure MFe2O4 (M = Mg Co, and Ni) spinal ferrites from tailored layered double hydroxide (Hydrotalcite-Like) precursors. Chem. Mater. 16, 1597–1602 (2004)

    Article  CAS  Google Scholar 

  4. A. Goldman, Modern Ferrites Technology, 2nd edn. (Springer, New York, 2006).

    Google Scholar 

  5. P.Y. Reyes-Rodríguez, Structural and magnetic properties of Mg–Zn ferrites (Mg1-xZnxFe2O4) prepared by sol–gel method. J. Magn. Magn. Mater. 427, 268–327 (2017)

    Article  Google Scholar 

  6. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res Lett 12, 1 (2017)

    Article  CAS  Google Scholar 

  7. T. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloys Compd. 694, 777 (2017)

    Article  CAS  Google Scholar 

  8. D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, Correlation of dielectric, electrical and magnetic properties near the magnetic phase transition temperature of cobalt zinc ferrite. Phys. Chem. Chem. Phys. 19, 210 (2017)

    Article  CAS  Google Scholar 

  9. Y. Liu, J. Hsu, The use of Co-precipitation to produce nano-Mn–Zn ferrite ([MnxZn1−x]Fe2O4) from waste batteries. Appl. Sci. 8(6), 1005 (2018). https://doi.org/10.3390/app8061005

    Article  CAS  Google Scholar 

  10. J. Smith, H.P.J. Wijn, Ferrites (Wiley, New York, 1959).

    Google Scholar 

  11. Y. Ichiyanagi, M. Kubota, S. Moritake, Y. Kanazawa, T. Yamada, T. Uehashi, Magnetic properties of Mg-ferrite nanoparticles. J. Magn. Magn. Mater. 310, 2378–2380 (2007)

    Article  CAS  Google Scholar 

  12. L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)

    Article  Google Scholar 

  13. S.B. Singh, C. Srinivas, B.V. Tirupanyam, Structural, thermal and magnetic studies of MgxZn1-xFe2O4 nanoferrites: study of exchange interactions on magnetic anisotropy. Ceram. Int. 42, 19179–19186 (2016)

    Article  CAS  Google Scholar 

  14. Z. Pedzich, Microstructure and properties of Mg–Zn ferrite as a result of sintering temperature. J. Eur. Ceram. Soc. 24(6), 1053–1056 (2004)

    Article  CAS  Google Scholar 

  15. J.P. Singh, S.O. Won, W.C. Lim, Electronic structure studies of chemically synthesized MgFe2O4 nanoparticles. J. Mol. Struct. 1108, 444–450 (2016)

    Article  CAS  Google Scholar 

  16. B.P. Rao, K.H. Rao, Effect of sintering conditions on resistivity and dielectric properties of Ni–Zn ferrites. J. Mater. Sci. 32, 6049 (1997)

    Article  CAS  Google Scholar 

  17. R. Sharma, P. Thakur, M. Kumar, P.B. Barman, P. Sharma, Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg–Zn ferrites as a heating source in hyperthermia applications. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.07.076

    Article  Google Scholar 

  18. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22(9), 1–10 (2020)

    Article  Google Scholar 

  19. W. Zhang, Magnetic transformation of Zn-substituted Mg-Co ferrite nanoparticles: hard magnetism→ soft magnetism. J. Magn. Magn. Mater. 506, 166623 (2020)

    Article  CAS  Google Scholar 

  20. W.A. Bayoumy, M.A. Gabal, Synthesis characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite. J. Alloys Compd. 506, 205–209 (2010)

    Article  CAS  Google Scholar 

  21. A. Ghasemin, M. Mousavinia, Structural and magnetic evaluation of substituted NiZnFe2O4 particles synthesized by conventional sol–gel method. Ceram. Int. 40, 2825–2834 (2014)

    Article  Google Scholar 

  22. V. Rathod, A. Anupama, R.V. Kumar, V. Jali, B. Sahoo, Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li–Zn ferrites. Vib. Spectrosc. 92, 267–272 (2017)

    Article  CAS  Google Scholar 

  23. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B 407(4), 795–804 (2012)

    Article  CAS  Google Scholar 

  24. S.E. Shirsath, B.G. Toksha, Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids 71, 1669–1675 (2010)

    Article  CAS  Google Scholar 

  25. J.Y. Hu, C.C. Liu, Synthesis, analysis and characterization of Co substituted NiZnTi spinel ferrite. J. Alloys Compd. 828, 154181 (2020)

    Article  CAS  Google Scholar 

  26. H.Z. Zhang, X.G. Shi, A. Tian, L. Wang, C.W. Liu, Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite. Appl. Surf. Sci. 436, 579–584 (2018)

    Article  CAS  Google Scholar 

  27. X.C. Kan, B.S. Wang, L. Zhang, Critical behavior in tetragonal antiperovskite GeNFe3 with a frustrated ferromagnetic state. Phys. Chem. Chem. Phys. 19(21), 13703–13709 (2017)

    Article  CAS  Google Scholar 

  28. W.J. Feng, D. Li, W.J. Ren, Glassy ferromagnetism in Ni3Sn-type Mn3.1Sn0.9. Phys. Rev. B 73(20), 5105 (2006)

    Article  Google Scholar 

  29. R.C. Che, C.Y. Zhi, C.Y. Liang, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88(3), 033105 (2006)

    Article  Google Scholar 

  30. K.K. Bharathi, R. Tackett, C.E. Botez, Coexistence of spin glass behavior and long-range ferrimagnetic ordering in La- and Dy-doped Co ferrite. J. Appl. Phys. 109(7), 07A510 (2011)

    Article  Google Scholar 

  31. R.N. Bhowmik, R. Ranganathan, Cluster glass behaviour in Co0.2Zn0.8Fe2−xRhxO4(x=0–1.0). J. Magn. Magn. Mater. 237(1), 27–40 (2001)

    Article  CAS  Google Scholar 

  32. R.N. Bhowmik, R. Ranganathan, Anomaly in cluster glass behaviour of Co0.2Zn0.8Fe2O4 spinel oxide. J. Magn. Magn. Mater. 248(1), 101–111 (2002)

    Article  CAS  Google Scholar 

  33. S.P. John, J. Mathew, Determination of ferromagnetic, superparamagnetic and paramagnetic components of magnetization and the effect of magnesium substitution on structural, magnetic and hyperfine properties of zinc ferrite nanoparticles. J. Magn. Magn. Mater. 475, 160–170 (2019)

    Article  CAS  Google Scholar 

  34. N. Singh, A. Agarwal, S. Sanghi, P. Singh, Effect of magnesium substitution on dielectric and magnetic properties of Ni–Zn ferrite. Physica B 406, 687–692 (2011)

    Article  CAS  Google Scholar 

  35. S. Linderoth, P.V. Hendriksen, F. Bødker, S. Wells, K. Davis, S.W. Charles, S. Mørup, J. Appl. Phys. 75, 6583 (1994)

    Article  CAS  Google Scholar 

  36. D. Fiorani, A.M. Testa, F. Lucari, Magnetic properties of maghemite nanoparticle systems: surface anisotropy and interparticle interaction effects. Physica B 320(1–4), 122–126 (2002)

    Article  CAS  Google Scholar 

  37. S.A. Morrison, C.L. Cahill, E.E. Carpenter, Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature. J. Appl. Phys. 95(11), 6392–6395 (2004)

    Article  CAS  Google Scholar 

  38. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2006).

    Google Scholar 

  39. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2008).

    Book  Google Scholar 

  40. S. Rahman, K. Nadeem, M. Anis-Ur-Rehman, Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram. Int. 39(5), 5235–5239 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872004, 51802002), the Key Program of the Science and Technology Department of Anhui Province (Grant No. S201904a09020074), Education Department of Anhui Province (KJ2018A0039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiansong Liu or Xucai Kan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, T., Liu, X. et al. Influence of Mg2+ replacement on the structure and magnetic properties of MgxZn1−xFe2O4 (x = 0.1–0.5) ferrites. J Mater Sci: Mater Electron 32, 4008–4020 (2021). https://doi.org/10.1007/s10854-020-05143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05143-3

Navigation