Skip to main content
Log in

Improved photovoltaic performance of solar cells co-sensitized with graphitic C3N4 and CdS quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, C3N4 in graphite-like layer structure (graphitic C3N4, g-C3N4) prepared from melamine was applied into quantum dot-sensitized solar cells (QDSCs) as the co-sensitizer of CdS quantum dots (QDs). In the as-prepared photoanodes, g-C3N4 could improve the visible-light absorption and play a supporting role to improve the stability of TiO2 photoanode microstructure simultaneously. Through modifying the content of g-C3N4 in TiO2 photoanode, QDSCs based on 10 wt% g-C3N4 in TiO2 photoanode achieved the most optimal photovoltaic performance. Its short-circuit current density (Jsc) improved greatly, up to 14.08 mA/cm2, 72.5% higher than that of QDSCs without g-C3N4 and furthermore, the power conversion efficiency (PCE) was 4.65% with an increase of 106.7%. The mechanism of effect of g-C3N4 content on the photovoltaic performance of QDSC is investigated systematically through combining photoanodes microstructure characterization with electrochemical impedance (EIS) and current–voltage (JV) curves analysis of cell samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Graetzel, R.A.J. Janssen, D.B. Mitzi et al., Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012)

    Article  CAS  Google Scholar 

  2. R. Sven, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)

    Article  Google Scholar 

  3. J. Bisquert, V.S. Vikhrenko, Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J. Phys. Chem. B 108, 2313–2322 (2004)

    Article  CAS  Google Scholar 

  4. D. Saygin, R. Kempener, N. Wagner et al., The implications for renewable energy innovation of doubling the share of renewables in the global energy mix between 2010 and 2030. Energies 8, 5828–5865 (2015)

    Article  Google Scholar 

  5. K.V. Vokhmintcev, P.S. Samokhvalov, I. Nabiev, Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today. 11, 189–211 (2016)

    Article  CAS  Google Scholar 

  6. J. Tian, G. Cao, Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320, 193–215 (2016)

    Article  Google Scholar 

  7. Y. Cheng, E.S. Arinze, N. Palmquist, S.M. Thon, Advancing colloidal quantum dot photovoltaic technology. Nanophotonics. 5, 31–54 (2016)

    Article  Google Scholar 

  8. I. Mora-Sero, J. Bisquert, Breakthroughs in the development of semiconductor sensitized solar cells. Phys. Chem. Lett. 1, 3046–3052 (2010)

    Article  CAS  Google Scholar 

  9. M.C. Hanna, A.J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 510 (2006)

    Article  Google Scholar 

  10. M.A. Green, Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovoltaics Res. Appl. 9, 123–135 (2010)

    Article  Google Scholar 

  11. P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)

    Article  CAS  Google Scholar 

  12. H.A. Polman, At water photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11, 174–177 (2010)

    Article  Google Scholar 

  13. W. Wang, L.J. Zhao, Y. Wang, W.N. Xue et al., A facile secondary deposition for improving quantum dot loading in fabricating quantum dot solar cells. J. Am. Chem. Soc. 141, 4300–4307 (2019)

    Article  CAS  Google Scholar 

  14. C.Y. Yen, Y.F. Lin, S.H. Liao et al., Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology. 19, 375305 (2008)

    Article  Google Scholar 

  15. L.J. Brennan, Carbon nanomaterials for dye-sensitized solar cell applications: a bright future. Adv. Energy Mater. 1, 472–485 (2011)

    Article  CAS  Google Scholar 

  16. R. Agarwal, S. Sahoo, R.S. Katiyar, Plasmon enhanced photovoltaic performance in graphene oxide-TiO2 composite based dye-sensitized solar cells. ECS J. Solid State Sci. Technol. 4, 64–68 (2015)

    Article  Google Scholar 

  17. Y. Zhu, X. Meng, H. Cui et al., Graphene frameworks promoted electron transport in quantum dot-sensitized solar cells. ACS Appl. Mater. Interfaces. 6, 13833–13840 (2014)

    Article  CAS  Google Scholar 

  18. H. Li, F. Zhao, J. Zhang, L. Luo et al., A g-C3N4/WO3 photoanode with exceptional ability for photoelectrochemical water splitting. Mater. Chem. Front. 1, 338–342 (2017)

    Article  CAS  Google Scholar 

  19. Q. Liang, M. Zhang, C. Liu et al., Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl. Catal. A 519, 107–115 (2016)

    Article  CAS  Google Scholar 

  20. J. Yu, S. Wang, J. Low et al., Enhanced photocatalytic performance of direct z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890 (2013)

    Article  CAS  Google Scholar 

  21. J.S. Xu, H.C. Isaac, X.F. Yang et al., The complex role of carbon nitride as a sensitizer in photoelectrochemical cells. Adv. Opt. Mater. 3, 1052–1058 (2015)

    Article  CAS  Google Scholar 

  22. S. Porada, F. Schipper, M. Aslan et al., Cover picture: capacitive deionization using biomass-based microporous salt-templated heteroatom-doped carbons. Chemsuschem 8, 1867–1874 (2015)

    Article  CAS  Google Scholar 

  23. J. Fu, B.B. Chang, Y.L. Tian et al., Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 1, 3083 (2013)

    Article  CAS  Google Scholar 

  24. W.K. Jo, T.S. Natarajan, Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem. Eng. J. 281, 549–565 (2015)

    Article  CAS  Google Scholar 

  25. J.S. Zhang, X.F. Chen et al., Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. (2010). https://doi.org/10.1002/anie.200903886

    Article  Google Scholar 

  26. X.F. Chen, J.S. Zhang, X.Z. Fu et al., Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009)

    Article  CAS  Google Scholar 

  27. Q. Gao, S. Sun, X. Li et al., Enhancing performance of CdS quantum dot-sensitized solar cells by two-dimensional g-C3N4 modified TiO2 nanorods. Nanoscale Res. Lett. 11, 463–471 (2016)

    Article  Google Scholar 

  28. Q.M. Wang, D. Wang, H.Q. Sun, W. Zheng, Effect of prepared methods on the microstructure and property of CuS nanocrystalline counter electrode in quantum dot sensitized cells. J. Chin. Ceram. Soc. 372, 114–121 (2020)

    Google Scholar 

  29. S. Zhao, S. Chen, H. Yu et al., g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation. Sep. Purif. Technol. 99, 50–54 (2012)

    Article  CAS  Google Scholar 

  30. C.P. Hus, K.M. Lee, T.W. Huang et al., EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochim. Acta 53, 7514–75227 (2008)

    Article  Google Scholar 

  31. Y.N. Zhang, D. Wang, Q.M. Wang, W. Zheng, Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer. J. Mater. Sci. 29, 14796–14802 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Harbin Project of outstanding academic leaders (Grant No. 2017RAXXJ078) and the Heilongjiang Province Science Fund (Grant No. E2018044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zheng, W. Improved photovoltaic performance of solar cells co-sensitized with graphitic C3N4 and CdS quantum dots. J Mater Sci: Mater Electron 32, 3989–3997 (2021). https://doi.org/10.1007/s10854-020-05141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05141-5

Navigation