Skip to main content
Log in

Optical performance of europium-doped β gallium oxide PVD thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

β-Gallium oxide is a wide bandgap material that is used in many electronic devices owing to its ultra wide bandgap of ~ 5 eV. It is commonly doped with rare earth metals like europium to improve its electronic and photoluminescence properties. However, the effect of doping concentration on particularly the optical properties has not been clearly reported yet. Here the aim was to dope β gallium oxide with different concentrations of europium. Therefore europium and gallium oxide were co-sputtered to get varying concentrations of europium in β gallium oxide structure. The doping concentration varied from 4.6 to 10.1 mole% of europium. Their microstructure and phase was studied by SEM and XRD, respectively and their optical performance was studied using UV–Vis spectrophotometer. The optical bandgap of β gallium oxide was found to decrease due to doping with europium. Although the transmittance increased drastically with increase in doping concentration from 4.6 to 10.1%, their bandgap was independent of the dopant concentration. In consultation with the binary phase diagram and photoluminescence of the thin films, the optimal dopant concentration in β gallium oxide was found to be around 10% Eu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Roy, M. Bandi, V.B. Zade, A. Martinez, V. Shutthanandan, S. Thevuthasan, C.V. Ramana, J. Phys. Chem. C 122(48), 27597 (2018)

    CAS  Google Scholar 

  2. M. Peres, E. Nogales, B. Mendez, K. Lorenz, M.R. Correia, T. Monteiro, N. Ben Sedrine, ECS J. Solid State Sci. Technol. 8(7), Q3097–Q3102 (2019)

    CAS  Google Scholar 

  3. J. Jiang, J. Zhang, J. Li, D. Xu, Chem. Phys. Lett. 719, 8–11 (2019)

    CAS  Google Scholar 

  4. B. Mallesham, S. Roy, S. Bose, A.N. Nair, S. Sreenivasan, V. Shutthanandan, C.V. Ramana, ACS Omega 2020 5(1), 104 (2019)

    Google Scholar 

  5. G. Liu, X. Duan, H. Li, D. Liang, Mater. Chem. Phys. 110, 206 (2008)

    CAS  Google Scholar 

  6. C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, X. Zhao, RSC Adv. 6, 78322 (2016)

    CAS  Google Scholar 

  7. I. Lopez, A.D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, J. Phys. Chem. C 116, 3935 (2012)

    CAS  Google Scholar 

  8. S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, S. Rajan, Appl. Phys. Express 10, 051102 (2017)

    Google Scholar 

  9. S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016)

    CAS  Google Scholar 

  10. D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, W. Tang, Mater. Today Phys. 11, 100157 (2019)

    Google Scholar 

  11. A.J. Green, K.D. Chabak, E.R. Heller, R.C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S.E. Tetlak, A. Crespo, K. Leedy, G.H. Jessen, IEEE Electron Device Lett. 37(7), 902 (2016)

    Google Scholar 

  12. E.S. Agorku, A.T. Kuvarega, B.B. Mamba, A.C. Pandey, A.K. Mishra, J. Rare Earths 33(5), 498 (2015)

    CAS  Google Scholar 

  13. C.C. You, T. Mongstad, J.P. Maehlen, S. Karazhanov, Appl. Phys. Lett. 105, 031910 (2014)

    Google Scholar 

  14. M.C. Cheynet, S. Pokrant, F.D. Tichelaar, J.-L. Rouvière, J. Appl. Phys. 101, 054101 (2007)

    Google Scholar 

  15. E.O. Filatova, A. Konashuk, J. Phys. Chem. C 119, 20755 (2015)

    CAS  Google Scholar 

  16. W. Xu, L. Chen, S. Han, P.J. Cao, M. Fang, W.J. Liu, D. Zhu, Y. Lu, J. Phys. Chem. C 124(14), 8015 (2020)

    CAS  Google Scholar 

  17. C.T. Lee, H.W. Chen, H.Y. Lee, Appl. Phys. Lett. 82(24), 4304–4306 (2003)

    CAS  Google Scholar 

  18. S. Manandhar, A.K. Battu, C. Orozco, C.V. Ramana, Opt. Mater. 96, 109223 (2019)

    CAS  Google Scholar 

  19. S. Shanmugan, D. Mutharasu, Mater. Sci. (2016). https://doi.org/10.5755/j01.ms.22.2.7186

    Article  Google Scholar 

  20. N. Watanabe, K. Ide, J. Kim, T. Katase, H. Hiramatsu, H. Hosono, T. Kamiya, Phys. Status Solidi A 216(5), 1700833 (2018)

    Google Scholar 

  21. E. Nogales, P. Hidalgo, K. Lorenz, B. Mendez, J. Piqueras, E. Alves, Nanotechnology 1, 285706 (2011)

    Google Scholar 

  22. Q. Guo, K. Nishihagi, Z. Chen, K. Saito, T. Tanaka, Thin Solid Films 639, 123 (2017)

    CAS  Google Scholar 

  23. C. Kura, H. Aoki, E. Tsuji, H. Habazaki, M. Martin, RSC Adv. 6, 8964 (2016)

    CAS  Google Scholar 

  24. K. Lim, L.T. Schelhas, S.C. Siah, R.E. Brandt, A. Zakutayev, S. Lany, B. Gorman, C.J. Sun, D. Ginley, T. Buonassisi, M.F. Toney, Appl. Phys. Lett. 109, 141909 (2016)

    Google Scholar 

  25. T. Miyata, T. Nakatani, T. Minami, Superf. Vacío 9, 70 (1999)

    Google Scholar 

  26. I. López, M. Alonso-Orts, E. Nogales, B. Méndez, J. Piqueras, Semicond. Sci. Technol. 31, 115003 (2016)

    Google Scholar 

  27. Y. Kato, M. Yamamoto, A. Ozawa, Y. Kawaguchi, A. Miyoshi, T. Oshima, K. Maeda, T. Yoshida, J. Surf. Sci. Nanotechnol. 16, 262 (2018)

    CAS  Google Scholar 

  28. J. Hao, Z. Lou, I. Renaud, M. Cocivera, Thin Solid Films 467, 182 (2004)

    CAS  Google Scholar 

  29. E. Nogales, I. López, B. Méndez, J. Piqueras, K. Lorenz, E. Alves, J.A. García, Proc. SPIE 8263, 82630B–1 (2009)

    Google Scholar 

  30. C. Yu, M. Cao, D. Yan, S. Lou, C. Xia, T. Xuan, R.-J. Xie, H. Li, J. Colloid Interface Sci. 530, 52 (2018)

    CAS  Google Scholar 

  31. Q. Yu, L. Su-qin, H. Ke-long, F Dong, Z. Xueying, Transactions Nonferrous Met. Soc. 20, 1458–1462 (2010). https://doi.org/10.1016/S1003-6326(09)60321-6

  32. N.F. Santos, J. Rodrigues, A.J.S. Fernandes, L.C. Alves, E. Alves, F.M. Costa, T. Monteir, Appl. Surf. Sci. 258, 9157 (2012)

    CAS  Google Scholar 

  33. K. Nishihagi, Z. Chen, K. Saito, T. Tanaka, Q. Guo, Mater. Res. Bull. 94, 170 (2017)

    CAS  Google Scholar 

  34. M. Kim, J.-H. Seo, U. Singisetti, Z. Ma, J. Mater. Chem. C 5, 8338 (2017)

    CAS  Google Scholar 

  35. P. Marwoto, S. Sugianto, E. Wibowo, J. Theor. Appl. Phys. 6(1), 17 (2012)

    Google Scholar 

  36. P. Wellenius, A. Suresh, J.V. Foreman, H.O. Everitt, J.F. Muth, Mater. Sci. Eng. B 146, 252 (2008)

    CAS  Google Scholar 

  37. P. Wellenius, A. Suresh, J.F. Muth, Appl. Phys. Lett. 92, 021111 (2008)

    Google Scholar 

  38. P. Wellenius, A. Suresh, H. Luo, L. M. Lunardi, J. F. Muth, J. Display Technol. 5(12), 438–445 (2009). https://doi.org/10.1109/JDT.2009.2024012

  39. P. Gollakota, A. Dhawan, P. Wellenius, L.M. Lunardi, J.F. Muth, Y.N. Saripalli, H.Y. Peng, H.O. Everitt, Appl. Phys. Lett. 88, 221906 (2006)

    Google Scholar 

  40. S. Ghose, S. Rahman, L. Hong, J.S. Rojas-Ramirez, H. Jin, K. Park, R. Klie, R. Droopad, J. Appl. Phys. 122, 095302 (2017)

    Google Scholar 

  41. Z. Ji, J. Du, J. Fan, W. Wang, Opt. Mater. 28(4), 415 (2006)

    CAS  Google Scholar 

  42. M. Rebien, W. Henrion, M. Hong, J.P. Mannaerts, M. Fleischer, Appl. Phys. Lett. 81, 2 (2002)

    Google Scholar 

  43. J. Dai, X.C. Zeng, J. Phys. Chem. Lett. 5, 1289 (2014)

    CAS  Google Scholar 

  44. V. Zade, B. Mallesham, S. Roy, V. Shutthanandan, C.V. Ramana, ECS J. Solid State Sci. Technol. 8(7), Q3111–Q3115 (2019)

    CAS  Google Scholar 

  45. W. Li, Y. Peng, C. Wang, X. Zhao, Y. Zhi, H. Yan, L. Li, P. Li, Y. Yang, Z. Wu, W. Tang, J. Alloy Compd. 697, 388 (2017)

    CAS  Google Scholar 

  46. H. Zhang, J. Deng, Z. Pan, Z. Bai, L. Kong, J. Wang, Vacuum 146, 93 (2017)

    CAS  Google Scholar 

  47. X. Ma, Y. Zhang, L. Dong, R. Jia, Results Phys. 7, 1582 (2017)

    Google Scholar 

  48. J. Díaz, I. López, E. Nogales, B. Méndez, J. Piqueras, J. Nanopart. Res. 13, 1833 (2011)

    Google Scholar 

  49. J. Zhang, J. Shi, D.-C. Qi, L. Chen, K.H.L. Zhang, APL Mater. 8, 020906 (2020)

    CAS  Google Scholar 

  50. S.P. Yatsenko, B.G. Semenov, K.A. Chuntonov, Izv. Akad. Nauk SSSR, Met. (5), 222–224 in Russian; Trans: Russ. Metall. 51, 173 (1978)

Download references

Acknowledgements

Authors S. Roy (principal investigator) and P. Mandal sincerely thank the Science and Engineering Research Board, Department of Science and Technology, Government of India, Grant Number EMR/2016/002927 for complete funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesna Roy.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to declare that are relevant to the title of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P., Singh, U.P. & Roy, S. Optical performance of europium-doped β gallium oxide PVD thin films. J Mater Sci: Mater Electron 32, 3958–3965 (2021). https://doi.org/10.1007/s10854-020-05137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05137-1

Navigation