Investigations on the properties of L-proline doped imidazolinium L-tartrate (IMLT) single crystals

Abstract

In the present work, imidazolinium L-tartrate (IMLT) crystals and L-proline-doped IMLT crystals were grown by slow cooling solution growth technique. The powder X-ray diffraction technique reveals the lattice parameters and strains developed due to the doping of L-proline in 1, 3 and 5 mol concentrations. The transmittance spectrum unveils the contribution of the dopant atoms on the optical property of the grown crystals. Bandgap and cut-off wavelength are affected by the increase in the dopant concentration. The vibrational frequencies around 3132, 2925 and 1438 cm−1 are due to the O–H stretching in the carboxyl group, C–H stretching vibration of carboxyl group and aromatic ring vibrations, respectively, present in the grown crystals are observed in the FTIR spectroscopic analysis. The dielectric constant and dielectric loss of pure and L-proline-doped IMLT crystals with respect to the frequency of the applied electric field have been investigated by the dielectric measurements at room temperature. The surface morphology of the grown crystals was examined by the etching study which reveals the growth mechanism of pure and L-proline-doped IMLT crystals. Etch pits in rectangular pattern were found to appear. The percentages of carbon, hydrogen and nitrogen elements present in pure and L-proline-doped IMLT crystals were determined using CHN analysis. The third-order nonlinear susceptibility was calculated from the nonlinear absorption coefficient and nonlinear refractive index data obtained from the Z-scan analysis. The dopant, L-proline, has altered the properties of IMLT single crystal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Z. Kotler, R. Hierle, D. Josse, J. Zyss, R. Masse, JOSA B. 9(4), 534–547 (1992). https://doi.org/10.1364/JOSAB.9.000534

    CAS  Article  Google Scholar 

  2. 2.

    C.B. Aakeröy, P.B. Hitchcock, Acta Crystallogr. Sect. C. 50(5), 759–761 (1994). https://doi.org/10.1107/S0108270193014258

    Article  Google Scholar 

  3. 3.

    M. Shakir, S.K. Kushwaha, K.K. Maurya, R.C. Bhatt, M.A. Wahab, G. Bhagavannarayana, Mater. Chem. Phys. 120(2–3), 566–570 (2010). https://doi.org/10.1016/j.matchemphys.2009.12.008

    CAS  Article  Google Scholar 

  4. 4.

    C. Serbutoviez, J.F. Nicoud, J. Fischer, I. Ledoux, J. Zyss, Chem. Mater. 6(8), 1358–1368 (1994). https://doi.org/10.1021/cm00044a039

    CAS  Article  Google Scholar 

  5. 5.

    R.N. Shaikh, M. Anis, G. Rabbani, M.D. Shirsat, S.S. Hussaini, Adv. Mater. Rapid Commun. 10, 526–531 (2016)

    CAS  Google Scholar 

  6. 6.

    C. Ji, T. Chen, Z. Sun, Y. Ge, W. Lin, J. Luo, Q. Shi, M. Hong, CrystEngComm 15(11), 2157–2162 (2013). https://doi.org/10.1039/C3CE26942F

    CAS  Article  Google Scholar 

  7. 7.

    M.A. Rajkumar, S.S. Xavier, S. Anbarasu, P.A. Devarajan, Opt. Mater. 55, 153–159 (2016). https://doi.org/10.1016/j.optmat.2016.03.022

    CAS  Article  Google Scholar 

  8. 8.

    I.M. Pritula, E.I. Kostenyukova, O.N. Bezkrovnaya, M.I. Kolybaeva, D.S. Sofronov, E.F. Dolzhenkova, A. Kanaev, V. Tsurikov, Opt Mater. 57, 217–224 (2016). https://doi.org/10.1016/j.optmat.2016.04.044

    CAS  Article  Google Scholar 

  9. 9.

    A. Jayarama, S.M. Dharmaprakash, Appl. Surf. Sci. 253(2), 944–949 (2006). https://doi.org/10.1016/j.apsusc.2006.01.051

    CAS  Article  Google Scholar 

  10. 10.

    A. Mohd, G.G. Muley, M.D. Shirsat, S.S. Hussaini, Mater. Res. Innov. 19(5), 338–344 (2015). https://doi.org/10.1179/1433075X15Y.0000000002

    CAS  Article  Google Scholar 

  11. 11.

    A.M. Petrosyan, R.P. Sukiasyan, H.A. Karapetyan, S.S. Terzyan, R.S. Feigelson, J. Cryst. Growth. 213(1–2), 103–111 (2000). https://doi.org/10.1016/S0022-0248(00)00011-7

    CAS  Article  Google Scholar 

  12. 12.

    K. Thukral, N. Vijayan, D. Haranath, K.K. Maurya, J. Philip, V. Jayaramakrishnan, J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.08.022

    Article  Google Scholar 

  13. 13.

    G. Bhagavannarayana, S. Parthiban, S. Meenakshisundaram, Cryst. Growth Des. 8(2), 446–451 (2007). https://doi.org/10.1021/cg0702129

    CAS  Article  Google Scholar 

  14. 14.

    P. Dhivya, R.A. Kumar, T. Theivasanthi, G. Vinitha, M.D. Kannan, J. Electron. Mater. 48, 1–11 (2019). https://doi.org/10.1007/s11664-019-07218-2

    CAS  Article  Google Scholar 

  15. 15.

    M. Meena, C.K. Mahadevan, Cryst. Res. Technol. 43(2), 166–172 (2008). https://doi.org/10.1002/crat.200711064

    CAS  Article  Google Scholar 

  16. 16.

    J. Baran, A.J. Barnes, H. Ratajczak, J. Mol. Struct. 1009, 55–68 (2012). https://doi.org/10.1016/j.molstruc.2011.09.016

    CAS  Article  Google Scholar 

  17. 17.

    T. Thilak, M. Basheer Ahamed, G. Vinitha, Optik-Int. J. Light Electron Opt. 124(21), 4716–4720 (2013). https://doi.org/10.1016/j.ijleo.2013.01.111

    CAS  Article  Google Scholar 

  18. 18.

    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, Opt. Lett. 14(17), 955–957 (1989). https://doi.org/10.1364/OL.14.000955

    CAS  Article  Google Scholar 

  19. 19.

    M. Sheikbahae, A.A. Said, T. Wei, D.J. Hagan, IEEE J. Quantum Elect. 26(4), 760–769 (1990). https://doi.org/10.1109/3.53394

    CAS  Article  Google Scholar 

  20. 20.

    T.S. Girisun, S. Dhanuskodi, G. Vinitha, Mater. Chem. Phys. 129(1–2), 9–14 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.013

    CAS  Article  Google Scholar 

  21. 21.

    K. Senthil, S. Kalainathan, A.R. Kumar, P.G. Aravindan, RSC Adv. 4(99), 56112–56127 (2014). https://doi.org/10.1039/C4RA09112D

    CAS  Article  Google Scholar 

  22. 22.

    M. Saravanan, T.S. Girisun, G. Vinitha, S.V. Rao, RSC Adv. 6(94), 91083–91092 (2016). https://doi.org/10.1039/C6RA21428B

    CAS  Article  Google Scholar 

  23. 23.

    P.V. Dhanaraj, N.P. Rajesh, J. Kalyana Sundar, S. Natarajan, G. Vinitha, Mater. Chem. Phys. 129(1–2), 457–463 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.041

    CAS  Article  Google Scholar 

  24. 24.

    R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, S.A. Britto Dhas, Opt. Mater. 57, 163–168 (2016). https://doi.org/10.1016/j.optmat.2016.04.030

    CAS  Article  Google Scholar 

  25. 25.

    S. Redrothu Hanumantharao, G. Kalainathan, U.M. Bhagavannarayana, Spectrochim. Acta A 103, 388–399 (2013). https://doi.org/10.1016/j.saa.2012.10.044

    CAS  Article  Google Scholar 

  26. 26.

    T. Wang, L. Cao, D. Zhong, J. Liu, F. Teng, S. Ji, S. Sun, J. Tang, B.G. Teng, CrystEngComm 21(17), 2754–2761 (2019). https://doi.org/10.1039/C9CE00150F

    CAS  Article  Google Scholar 

  27. 27.

    S. Vasuki, R.T. Karunakaran, G. Shanmugam, J. Mater. Sci. 28(17), 12916–12928 (2017). https://doi.org/10.1007/s10854-017-7122-0

    CAS  Article  Google Scholar 

Download references

Acknowledgements

One of the authors (P. Dhivya) is thankful to the TEQIP-III, PSG College of Technology (TEQIP/No A/17 dated 25.11.2017) for the financial assistance to carry out this work. The corresponding author (Dr. R. Arun Kumar) is thankful to the University Grants Commission—South Eastern Regional Office, Hyderabad, India, for awarding the Minor research project (No.F. MRP-6721/16 (SERO UGC) Link 6721, dated June 30, 2017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Arun Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhivya, P., Kumar, R.A. & Vinitha, G. Investigations on the properties of L-proline doped imidazolinium L-tartrate (IMLT) single crystals. J Mater Sci: Mater Electron 32, 3673–3687 (2021). https://doi.org/10.1007/s10854-020-05113-9

Download citation