Skip to main content
Log in

Magnetic transformation of Ni–Mg–Zn ferrite substituted by the Co2+ ions from soft magnetic to hard magnetic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co2+ ions substituted Ni0.2Mg0.2CoxZn0.6−xFe2O4 (x = 0, 0.15, 0.3, 0.45 and 0.6) nanoferrite was prepared by sol–gel method. The spinel structure of the material was characterized by X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to observe the morphology and shape of the prepared nanoferrite particles. The diffraction ring of the sample was observed by selected area electron diffraction (SAED), which is similar with the diffraction ring of spinel structure. The chemical element composition of the sample was analyzed by EDS, which confirmed the presence of Ni, Mg, Zn, Co, Fe, and O elements in the sample. Vibrating sample magnetometer (VSM) was used to measure the magnetic properties of prepared samples. It found that the magnetism of Ni0.2Mg0.2CoxZn0.6−xFe2O4 (x = 0, 0.15, 0.3, 0.45 and 0.6) nanoferrite substituted by Co2+ ions changed from soft magnetic to hard magnetic. The coercivity increased from 4.87 to 523.25 (Oe). Moreover, the Ni0.2Mg0.2CoxZn0.6−xFe2O4 nanoferrite sample has the characteristics of ferromagnetism when x increase to 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Ali, M.U. Islam, M. Ishaque, H.M. Khan, M.N. Ashiq, M.U. Rana, Structural and magnetic properties of holmium substituted cobalt ferrites synthesized by chemical co-precipitation method. J. Magn. Magn. Mater. 324, 3773–3777 (2012)

    CAS  Google Scholar 

  2. G.V. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Magn. Magn. Mater. 460, 229–233 (2018)

    CAS  Google Scholar 

  3. M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman, Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006)

    CAS  Google Scholar 

  4. R.C. Kambale, N.R. Adhate, B.K. Chougule, Y.D. Kolekar, Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate–nitrate combustion method. J. Alloys Compds. 491, 372–377 (2010)

    CAS  Google Scholar 

  5. P.R. Arjunwadkar, R.R. Patil, D.K. Kulkarni, Effect of sintering temperature on the structural, electrical and magnetic properties of Li0.5Al1.0Fe2O4 ferrite prepared by combustion method. J. Alloys Compds. 463, 403–407 (2008)

    CAS  Google Scholar 

  6. M. Irfan, N.A. Niaz, I. Ali, S. Nasir, A. Shakoor, A. Aziz, N. Karamat, N.R. Khalid, Dielectric behavior and magnetic properties of Mn-substituted Ni–Zn ferrites. J. Electron. Mater. 44, 2369–2377 (2015)

    CAS  Google Scholar 

  7. D. Ravinder, K. Latha, Dielectric behaviour of mixed Mg–Zn ferrites at low frequencies. Mater. Lett. 41, 247–253 (1999)

    CAS  Google Scholar 

  8. M.M. Haquea, M. Huqa, M.A. Hakim, Densifification, magnetic and dielectric behaviour of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 580–586 (2008)

    Google Scholar 

  9. R.B. Pujar, S.S. Bellad, S.C. Watawe, B.K. Chougule, Magnetic properties and microstructure of Zr4+ substituted Mg-Zn ferrites. Mater. Chem. Phys. 57, 264–267 (1999)

    CAS  Google Scholar 

  10. V.J. Angadi, B. Rudraswamy, K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+-Gd3+ on structural, electrical and magnetic properties of Mn-Zn ferrites synthesized via combustion route. J. Alloys Compd. 656, 5–12 (2016)

    Google Scholar 

  11. E. Melagiriyappa, H.S. Jayanna, B.K. Chougule, Dielectric behavior and ac electrical conductivity study of Sm3+ substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 68–73 (2008)

    CAS  Google Scholar 

  12. S. Kumar, R. Kumar, P. Thakur, K.H. Chae, B. Angadi, W.K. Choi, Electrical transport, magnetic, and electronic structure studies of Mg0.95Mn0.05Fe2−2xTi2xO4 ± δ (0≤x≤05) ferrites. J. Phys. Condens. Matter. 19, 1–15 (2007)

    Google Scholar 

  13. L. Satyanarayana, K.M. Reddy, S.V. Manorama, Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater. Chem. Phys. 82, 21–26 (2003)

    CAS  Google Scholar 

  14. F. Kenfack, H. Langbein, Influence of the starting powders on the synthesis of nickel ferrite. Cryst. Res. Technol. 41, 748–758 (2006). https://doi.org/10.1002/crat.200510663

    Article  CAS  Google Scholar 

  15. P.K. Chakrabarti, B.K. Nath, S. Brahma, S. Das, K. Gosawami, V. Kumar, P.K. Mukhopadhyay, D. Das, M. Ammer, F. Mazaleyrat, Magnetic and hyperfine properties of nanocrystalline Ni0.2Zn0.6Cu0.2Fe2O4 prepared by a chemical route. J. Phys. Condens. Matter. 18, 5253 (2006)

    CAS  Google Scholar 

  16. R.A. Torquato, F.A. Portela, L. Gama, D.R. Cornejo, S.M. Rezende, R.H.G.A. Kiminami, A.C.F.M. Costa, Avaliação da microestrutura e das propriedades magnéticas de ferritas Ni-Zn dopadas com cobre (Evaluation of microstructure and magnetic properties of Ni-Zn ferrite doped with copper). Cerâmica 54, 55–62 (2008)

    CAS  Google Scholar 

  17. A. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)

    CAS  Google Scholar 

  18. H.E. Scherrer, H. Kisker, H. Kronmuller, R. Wurschum, Nanostruct. Mater. 6, 533–538 (1995)

    Google Scholar 

  19. X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chem. Eng. J. 250, 164–174 (2014)

    CAS  Google Scholar 

  20. R.D. Shannon, C.T. Prewitt, Acta Cryst. 925, 825 (1969)

    Google Scholar 

  21. M.D. Shultz, E.E. Carpenter, S.A. Morrison, S. Calvin, Cation occupancy determination in manganese zinc ferrites using Fourier transform infrared spectroscopy. J. Appl. Phys. 99, 83–86 (2006)

    Google Scholar 

  22. J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959).

    Google Scholar 

  23. N. Varalaxmi, K.V. Sivakumar, Structural and dielectric studies of magnesium substituted Ni-Cu-Zn ferrites for microinductor applications. Mater. Sci. Eng. B. 184, 88–97 (2014). https://doi.org/10.1016/j.mseb.2014.01.003

    Article  CAS  Google Scholar 

  24. B.D. Cullity, Elements of X-Ray Diffraction (Addison Wesley Publication Co. Inc., Boston, 1967), p. 96

    Google Scholar 

  25. H.E. Hassan, T. Sharshar, M.M. Hessien, O.M. Hemeda, Effect of c-rays irradiation on Mn-Ni ferrites: structure, magnetic properties and positron annihilation studies. Nucl. Instrum. Methods Phys. Res. B. 304, 72–79 (2013)

    CAS  Google Scholar 

  26. K. Standley, Oxide Magnetic Materials (Clarendon, Oxford, 1974), p. 97

    Google Scholar 

  27. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Structural analysis of Y3+-doped Mg–Cd ferrites prepared by oxalate co-precipitation method. Mater. Chem. Phys. 114, 505–510 (2009)

    CAS  Google Scholar 

  28. K.P. Chae, J.-G. Lee, H.S. Kweon, Y.B. Lee, Synthesis and magnetic properties of AlxCoFe2-xO4 ferrite powders. Phys. Status Solidi. 201, 1883–1888 (2004)

    CAS  Google Scholar 

  29. Y. Slimani, M.A. Almessiereb, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Inflfluence of WO3 nanowires on structural, morphological and flflux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45, 2621–2628 (2019)

    CAS  Google Scholar 

  30. R. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955)

    CAS  Google Scholar 

  31. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    CAS  Google Scholar 

  32. Q.M. Wei, J.B. Li, Y.J. Chen, Cation distribution and infrared properties of NixMn1−xFe2O4 ferrites. J. Mater. Sci. 36, 5115–5118 (2001)

    CAS  Google Scholar 

  33. C.K.Y. Yafet, Phys. Rev. 87, 290–294 (1958)

    Google Scholar 

  34. X. Wu et al., Enhanced infrared radiation properties of CoFe2O4 by single Ce3+doping with energy-efficient preparation. Ceram. Int. 40, 5905–5911 (2014)

    CAS  Google Scholar 

  35. S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta Mater. 56, 797–800 (2007)

    CAS  Google Scholar 

  36. P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116, 207–213 (2009)

    CAS  Google Scholar 

  37. Y. Köseoğlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012)

    Google Scholar 

  38. F. Yan, M.O. Lai, L. Lu, Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films. J. Phys. Chem. C. 114, 6994–6998 (2010)

    CAS  Google Scholar 

  39. G.K. Joshi, S. Deshapande, A. Khot, S.R. Sawant, Ind. J. Phys. A 61, 251 (1987)

    Google Scholar 

  40. G.K. Joshi, S. Deshapande, A. Khot, S.R. Sawant, Solid State Commun. 65, 593 (1988)

    Google Scholar 

  41. J. Wang, C. Zeng, Z. Peng, Q. Chen, Synthesis and magnetic properties of Zn1-xMnxFe2O4 nanoparticles. Phys. B 349, 124–128 (2004)

    CAS  Google Scholar 

  42. P. Motavallian, B. Abasht, H. Abdollah-Pour, Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method. J. Magn. Magn. Mater. 451, 577–586 (2018)

    CAS  Google Scholar 

  43. J.M.D. Coey, Rare-Earth Iron Permanent Magnets (Oxford University Press, New York, 1996).

    Google Scholar 

  44. S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrites. J. Appl. Phys. 108, 2–6 (2010)

    Google Scholar 

  45. L. Neel, SCR Acad. Sci. 230, 375 (1950)

    Google Scholar 

  46. B.S. Chauhan, R. Kumar, K.M. Jadhav, M. Singh, Magnetic study of substituted Mg–Mn ferrites synthesized by citrate precursor method. J. Magn. Magn. Mater. 283, 71–81 (2004). https://doi.org/10.1016/j.jmmm.2004.04.133

    Article  CAS  Google Scholar 

  47. E.E. Ateia, F.S. Soliman, Modifification of Co/Cu nanoferrites properties via Gd3+/ Er3+ doping. Appl. Phys. A. 123, 312 (2017). https://doi.org/10.1007/s00339-017-0948-8

    Article  CAS  Google Scholar 

  48. U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg–Zn ferrites. J. Magn. Magn. Mater. 407, 60–68 (2016). https://doi.org/10.1016/j.jmmm.2016.01.022

    Article  CAS  Google Scholar 

  49. M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia, Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitution. J. Alloys Compds. 509, 2473–2477 (2011)

    CAS  Google Scholar 

  50. Y. Yafet, C. Kittel, Phys. Rev. 90, 295 (1952)

    Google Scholar 

  51. S.S. Bellad, R.B. Pujar, B.K. Chougule, Structural and magnetic properties of some mixed Li-Cd ferrites. Mater. Chem. Phys. 52, 166–169 (1998). https://doi.org/10.1016/S0254-0584(98)80019-9

    Article  CAS  Google Scholar 

  52. T. Ibusuki, S. Kojima, O. Kitakami, Y. Shimada, Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE Trans. Magn. 37, 2223–2225 (2001)

    CAS  Google Scholar 

  53. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, N., Sun, A., Zhang, Y. et al. Magnetic transformation of Ni–Mg–Zn ferrite substituted by the Co2+ ions from soft magnetic to hard magnetic. J Mater Sci: Mater Electron 32, 3286–3302 (2021). https://doi.org/10.1007/s10854-020-05077-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05077-w

Navigation